Solutions to Even Problems, Section 4.2

16) $f(x)=\left\{\begin{array}{ll}2-(2 x-1) & 2 x-1 \geq 0 \\ 2+2 x-1 & 2 x-1<0\end{array}\right.$, so $f^{\prime}(x)=\left\{\begin{array}{ll}-2 & 2 x-1>0 \\ 2 & 2 x-1<0\end{array}\right.$. But $\frac{f(3)-f(0)}{3-0}=-4 / 3$, which is not equal to $f^{\prime}(c)$ for any c. The Mean Value Theorem does not apply because f is not differentiable at $x=1 / 2$.
17) $f(-1)=-1+1 / e<0$ and $f(0)=1>0$, so (since f is continuous) the Intermediate Value Theorem implies that there exists a $c \in(-1,0)$ so that $f(c)=0$. Then not that $f^{\prime}(x)=3 x^{2}+e^{x} \geq e^{x}>0$ for all x. Thus f is an increasing function, so $f(y)<0$ for $y<c$ and $f(y)>0$ for $y>c$, and so c is the only zero.
Alternately, if f had two zeros, then Rolle's theorem would imply that f^{\prime} had a zero somewhere inbetween, which contradicts the fact that $f^{\prime}(x)>0$.
18) $f^{\prime}(x)=4 x^{3}+4$, which has at most one real root since x^{3} is an increasing function (and so $4 x^{3}+4$ is also increasing). Thus $f(x)$ has at most two real roots.
(Longer: If f had three roots, then Rolle's Theorem would imply that f^{\prime} had at least two roots, which it doesn't.)
19)

a) Rolle's Theorem.
b) By Rolle's Theorem, $f^{\prime}(x)$ has at least two real roots. Since $f(x)$ is twice differentiable, we know that $f^{\prime}(x)$ is a differentiable function. Since $f^{\prime}(x)$ is differentiable and has two real roots, applying Rolle's theorem to $f^{\prime}(x)$ tells us that its derivative (which is $f^{\prime \prime}(x)$) has at least one real root.
c) If f is n times differentiable on \mathbb{R} and has $(n+1)$ real roots, then $f^{(n)}$ has at least one real root.
24) By the MVT, there exists $c \in(2,8)$ so that $f^{\prime}(c)=\frac{f(8)-f(2)}{8-2}$. Since $3 \leq f^{\prime}(c) \leq 5$, we get that $3 \leq \frac{f(8)-f(2)}{6} \leq 5$, and so $18 \leq f(8)-f(2) \leq 30$.
26) Let $h=f-g$. Then by the MVT, there exists $c \in(a, b)$ such that $h^{\prime}(c)=\frac{h(b)-h(a)}{b-a}$. But $h^{\prime}(c)>0$, and so we get $0<\frac{f(b)-g(b)}{b-a}$. It follows that $f(b)-g(b)>0$, and so $f(b)>g(b)$.
28) f is odd, so $f(-b)=-f(b)$. By the MVT, there exists a $c \in(-b, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(-b)}{b-(-b)}=\frac{2 f(b)}{2 b}=\frac{f(b)}{b}
$$

30) Let $g(x)=c x$. Then $f^{\prime}(x)=g^{\prime}(x)=c$ for all x, so Corollary 7 implies that $f(x)=g(x)+d=c x+d$ for some constant d.
31) Take derivatives of both sides.

$$
\begin{aligned}
\frac{d}{d x} 2 \arcsin (x) & =\frac{2}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \arccos \left(1-2 x^{2}\right)=\frac{-1}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}(-4 x) & =\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=\frac{4 x}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Thus by Corollary 7 the two functions are the same up to a constant. Since both are equal to zero when $x=0$, that constant is zero, and so the two functions are equal.
34) Use the fact that acceleration is the derivative of velocity, and that 10 minutes is $1 / 6$ of an hour. Then (assuming that the velocity of the car is a differentiable function) the MVT implies that there is some $t \in(2: 00,2: 10)$ such that $f^{\prime}(t)=(50-30 \mathrm{mph}) /(1 / 6 h)=120 \mathrm{mi} / h^{2}$.
36) Suppose $f(a)=a, f(b)=b$ for some $a, b \in \mathbb{R}$. Then the MVT implies that $f^{\prime}(c)=\frac{f(a)-f(b)}{a-b}=\frac{a-b}{a-b}=1$ for some $c \in(a, b)$. This contradicts the assertion that $f^{\prime}(x) \neq 1$ for all real numbers x, so f has at most one number a such that $f(a)=a$.
Alternately, let $g(x)=f(x)-x$. We would then have that $g^{\prime}(x) \neq 0$, and want to show that g has at most one real zero, which follows from Rolle's Theorem.

