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LSQR

lterative algorithm for

min ||Ax — b||3
X

@ Developed in 1982 (Paige, Saunders)
@ Properties of LSQR

o Minimizes ||r|| := ||b — Axk|| for every iterate x

o Equivalent to CG on the normal equations A" Ax = AT b

® ||xk|| monotonically increasing (update directions positively correlated)
o ||xk — x«|| monotonically decreasing

o Cost: Av, A" u plus O(m + n) operations per iteration (A € R™*")

o Can be adapted to solve the problem min, ||Ax — b||5 + \?||x||?
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Outline

© Previous Work
@ Golub-Kahan bidiagonalization and LSQR
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Golub-Kahan bidiagonalization

Given A € R™*" and b € R”,

b= Uk(fre1)
AV = Uk41 Bk
AT U = Vi L]

where
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and Uy, Vi are orthogonal
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Golub-Kahan bidiagonalization

Given A € R™*" and b € R”,

b= Uk(fre1)
AV = Uk41 Bk
AT U = Vi L]

lterative bidiagonalization

Biup = b,ayvi = AT iy
for k=1,2,..., do

BrriUxr1 = Avk — il

-
Qpr1Vke1 = A Uk — Brr1 Vi

o Cost: Avy, AT uy plus 3m -+ 3n flops

@ Only the most recent u, and v, are stored
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Golub-Kahan bidiagonalization

Vi and Uy span the Krylov subspaces:

span(uy, ..., ux) =span(b, (AAT)b, ..., (AAT )<~ 1p),
span(vi,...,vk) =span(A" b, (ATA)A b, ..., (ATA AT b)

Defining xx := Viyr and r, := b — Axx, get

LSQR Subproblem

min || rk|| = min [|S1e1 — Byl
Xk Yk

where By is (k + 1) x k.
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LSQR Subproblem

min || rg||

Xk
— rr;//l(n b — AV vl Xk = Vikyk
— rT}Ln Uk1(Brer — Bryi)| b= pru1, AV = Uy y1Bx

: f R R f,
:”}L” ( /k > — ( %yk> H Qk1 (Bk 5161) = (Ok /k )
k+1 k+1

=| @)1l vk = R My

Computation
xk = Viyk = (VkR D) fi = Dif = xx—1 + brdk [dk = Di(:, k)]
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Outline

© Previous Work

@ LSLQ and estimating [[xx — x||
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Estimating ||xx — x|

How can we estimate ||xx — x.||?

@ Suppose we have 0 < opnin(A) (or regularization with A > 0)
o Naive: | xx — xi|| = ||AT(Axk — b)|| < [|ri|| /T

@ ...but ||rk|| may not converge to zero
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Estimating ||xx — x|

Key idea (Estrin, Orban, and Saunders, 2017):

Define e; = [1,0,...,0]" and

—~ R 0Oii1e

Pk Okt1

where w is chosen so that O'min(ﬁk_|_]_) < 0 < Omin(A). Then

~ ~ -2
x| < 0282e] (RiGaRiss) e

o By properties of LSQR, [|[x5> — x. || < |Ix]I? = Ix>9F |12

@ The bound converges to zero when o > 0.
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Estimating |[xx — xi||: LSLQ

We can use the related algorithm LSLQ (Estrin, Orban, and Saunders, 2017) to

tighten the bound.

@ LSLQ computes X,fSLQ = Vi vk, where

vk =argmin|ly|| : [Rk—1, Okek—1]y = fk—1
y

@ Orthogonal update directions

o ||x.>t? — x,|| monotonically decreasing
o y,fSLQ,yka(fR and y,fSQR all solve [Rx_1, Oxex—1]y = fx_1...collinear!
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Estimating |[xx — xi||: LSLQ
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e Old bound: ||X,fSQR — X ||2 < 1% |]? = ||X;65QR||2

o New formulation: ||x>% — x. |2 < ([lx — x> 9Y2) — [ — x> 9F)|12
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LSLQ Subproblem

[Rk—1, Oxek—1lyx = fk—1
T T — [ R R,_
[Ri_1, O]Qy vk = fy—1 P lekg[—lll = FB 1]

— || s-T
Yk = Qx [O] Ry_1fk—1

— || = — —T
Xk = Vi Qu [0] fr—1 fre1=Ry_1fk—1
_ V B ? B V. 1 — [ ?k—l __gk—ll
Xk k—1T k—1 [Vk 1, Vk] [Vk—la Vk] [Sk—l it

Xk = Xk—1 + Pp_1Vk-1

o ||xt>t9)| (and also [|x->t9 — xR ) cost O(1) to compute

LSLQ
Xk

e Computation of not strictly necessary
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Outline

© Our Work

@ Craig's method and minimizing ||xx — x.||
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Minimizing ||xx — x|

What happens if we try to minimize ||xx — x.|| directly?
One tempting possibility is Craig’s method (1955):

@ Solves L.y, = (B1e; at each step
@ Orthogonal update directions
@ Minimizes ||xx — x«|| on consistent systems

@ ...but does not converge on inconsistent ones
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Minimizing ||xx — x|

What happens if we try to minimize ||xx — x.|| directly?

@ Earlier theorem:

Ix]]? = bTA(ATA)2AT b
fk 4 / ~T P —2 / T fk
S / Rk_|_1(Rk_|_]_Rk—|—1) (Rk—|—1) / ?
k41 k+1

where R, ; = Quy1Llis1.
@ Unfortunately,

Ixe — x| = rl A(ATA)2AT 1

fk — R ~r = fi —R
¢ [ , k”‘] R, (BT Ress) Q(RLH)T[" , Y]
k+1 k+1

But we can come close!
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Minimizing ||xx — x|

Main idea: examine the top left block of ([Vii1, V*]TATA[Vieia, VL])_l.

B eV
° A[Vk—l—la VJ_]:[Uk+27 UJ_][ k+1 k+2V ]

0 (UL)TAVl
-1 B
® A1 A . (A11—A12A221A21)_1 %
A Ax - * *
@ Result:

V{1 (ATA) Wi = (R Re) ™
where
Ry — [Rk Ok+1€k ]
0 P;<+1/C;<<+1

and ¢x11 < ¢4 <1
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Minimizing ||xx — x|

Theorem (Hallman, Gu 2018)

Pick Cxy1 so that either Cxy1 = 1 or Omin (§k+1) < o. Then

Ckt1Pt1

)

1Parell < \

[fk — Rk)/k]

where Pary is the projection of r, onto span(A).

In particular, ¢, ; = [Parc> <R[ /1| P29

Eric Hallman (University of California, Berkeley)  Adapting Craig's Method for Least-Squares Problems Fall 2018 18 / 30



Minimizing ||xx — x|

Apply the same ideas to ([Vikt1, V*]TATA[Via, VL])_Z.

@ Result:

_ ~r  ~ | 0 ~r  ~ _
VI L(ATA) Vi = (R 1 Rk) ™ [O 5;21] (R 1 Ri1) ™,
_|_

where &1 1 is somewhat difficult to bound effectively.
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Outline

© Our Work

@ Main results
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Main Result

We can minimize ||xx — x.«|| without knowing & 1!
H [Rk_lfk — Yk — 9k+1(CZ+1)2¢;<+1/p;<+1Rk_lek]

QO (XK — Xi|| =
= x| (6 2/ (Phr i)
L _ V2 Prrt
® Minimized when Ryyx = fix — Oki1(ciyq) o Ck

o If Cir1 = 0, we recover LSQR

o If ¢/, ; =1, we recover Craig's method
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Main Result
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@ Six collinear points
@ Given 0 < 0 < ogmin(A), x CRA'G+ will converge to x,

@ Minimizing |[xx — x.|| is equivalent to measuring || Parx||

CRAIG+ beats x LSQR

@ X, if and only if Cxy1 < 2¢; 4
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Main Result

Name: Ip_ganges, Size: 1706 x 1309, nnz: 6937

—6&—LSQOR
—%— CRG+
—+—CRG

OPT | |

logg [lzk — ||/ ]| |

-12 +

14 1 | 1 1
0 50 100 150 200 250

lterations

@ Craig's method can sometimes outperform LSQR
@ It is sometimes possible for our method to outperform both
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Name: Ip_ganges, Size: 1706 x 1309, nnz: 6937
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@ Craig's method can sometimes outperform LSQR
@ It is sometimes possible for our method to outperform both
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Main Result

Name: Ip_gfrd_pnc, Size: 1160 x 616, nnz: 2445

—O—LSQR ek

—%— CRG+

—+—CRG
OPT

logyg ||z — .| /]| |

| I
0 500 1000 1500 2000 2500 3000

lterations

@ Craig's method can sometimes outperform LSQR
@ It is sometimes possible for our method to outperform both
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Main Result

Name: Ip_standmps, Size: 1274 x 467, nnz: 3878

10

logyg |2k — /|| 2]

-15

—O—LSQR
—%— CRG+
—+—CRG

OPT

50 100 150 200 250
lterations

@ Craig's method can sometimes outperform LSQR

300 350

@ It is sometimes possible for our method to outperform both
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Main Result

Name: Ip_bnl2, Size: 4486 x 2324, nnz: 14996
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OPT | |
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lterations

@ Craig's method can sometimes outperform LSQR
@ It is sometimes possible for our method to outperform both
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Outline

© Our Work

@ Open problems and future directions
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Remaining lssues

@ Stably estimate Cx11 (equivalently, w) from Ek_|_]_

@ Improve the estimate of ||xx — x.||

Both are necessary for our method to be practical!
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Estimating w

We would like to solve

as accurately as possible.
o Implicit Cholesky on R[], | Rky1 — o2/
If 0 < omin(A) is too conservative, the bounds are weak
If o is too aggressive, the factorization will break down
Suggestion: & = opmin(A)(1 — 10719) (Estrin, Orban, Saunders 2017)

It seems that we cannot avoid subtraction (Tichy, Meurant, Strakos 2014)
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Estimating ||xx — x|

Without an upper bound on £ (or some equivalent), we cannot beat the error
bound for LSQR.

?
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LELQ LgQR LgQR ¢ CRAIG CIgAIG
+
X Xk—1 Xk X Xk
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Summary

LSLQ, LSQR, and Craig's method produce collinear iterates
Also collinear with x; = argmin,, cq,an(v,) IXk — X« |

Finding x; is equivalent to measuring ||Par||

Given & > 0 (or A > 0), x-"C™ converges to x,

x FACT might outperform LSQR

@ Performance depends on how close & is to omin(A)

@ LSQR is often close to optimal
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Future Directons

@ Find practical upper bounds for &
@ Extend to SPD problems—SYMMLQ and CG?
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For Further Reading |

@ Ron Estrin, Dominique Orban, and Michael Saunders

LSLQ: An lterative Method for Linear Least-Squares with an Error

Minimization Property
http://stanford.edu/ restrin/files/e0s2017.pdf

Ron Estrin, Dominique Orban, and Michael Saunders
LNLQ: An lterative Method for Least-Norm Problems with an Error

Minimization Property
http://stanford.edu/ restrin/files/e0s2018.pdf

Petr Tichy, Gérard Meurant, and Zdenék Strakos

A New Algorithm for Computing Quadrature-Based Bounds in Conjugate
Gradients

http://www.cs.cas.cz/tichy /download /present /2014Spa.pdf

Chris Paige and Michael Saunders
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
ACM Transactions on Mathematical Software 8(1):43-71, 1982.
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