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1 Birch and Swinnerton-Dyer Conjecture

Consider E : y?> = 2° +az +b/Q, an elliptic curve over Q. By the Mordell-Weil theorem,
the group E(Q) is finitely generated, so by the structure theorem of finitely generated
abelian groups we have:

E(Q) =7 D E(Q)tors

Where r > 0 is called the rank, and E(Q))¢ors are the elements of finite order. In order
to better understand these groups, we reduce mod p (whenever possible).

Let p > 3 and consider E : y?> = 23 + azx + b/F,, an elliptic curve over F,, which
looks a little different when p = 2,3. By a theorem of Hasse and Weil, we have:

[#(EF,)) — (p+ 1) <2vp

If we define N, = #E(IF,,) then it is natrual to consider the quantity %. Numerical date
collected by Birch and Swinnerton-Dyer suggested the following very interesting result:

H N ~ Clog(z)"
p

p<z

where r is the rank of E/Q. When they approached the experts with their results, they
were told that they should rephrase their results in terms of L-functions, so they did.

Set a, = p+1— N, and consider the following:

1
LP(E’ S) = 1— appfs _{_plfQS
Then by formally evaluating at s = 1 we have:
p
L,(E,1)=—
o(B1) = 5

Define L(E, s) =[], Ly(E, s) so that formally we have:
p
L = —
P
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The idea behind the Birch and Swinnerton-Dyer conjecture is as follows. Suppose r > 0.
Then there should be lots of points over QQ, which should give lots of points mod p,
forcing L(E,1) = 0, and perhaps if the rank is larger we might believe that the denom-
inators NN, are so large that it forces L'(E,1) = 0,L"(E,1) = 0, etc.

We have the following:
Conjecture 1.1. rank(E(Q)) = ord|s=1L(E, s)

To explain the partial progress on BSD, which can be summarized as analytic rank
0 or 1 implies Mordell-Weil rank 0 or 1, we introduce the Gross-Zagier formula.

2 Modular Curves

Let H = {z € C | Im(z) > 0}, and recall this space carries an action of SL(2,Z) by
linear fractional transformations. Now consider:

*

To(N) ={A € SL(2,Z) |A= < . I > (mod N)} (1)

It is well known that I'o(N)/H := Y5 (N) is a Riemann surface with finitely many cusps,
and whose compactification is an algebraic curve that can be defined over Q. Away
from the cusps, X((INV) parametrizes isogenies of elliptic curves (¢ : E — E’) with
ker(¢) = Z/(n). The covering 7 : Xo(N) — Xo(1) corresponds to (C/(Z + 7Z) — C/
(¥Z+7Z))) — C/(Z+72))

Now fix an imaginary quadratic field K = Q(v/—d), and choose N with the property
that the primes dividing N split in K. Such an N is said to satisfy the Heegner hypoth-
esis. Then clearly we can find an ideal n with Ox/n = Z/(N). Then for any a C O,
we have the covering (C/a — C/n"1a) € Xo(N)(C). Dilating a by anything in K gives
the same elliptic curve, thus giving a well-defined map on ideal classes. We have:

" CUEK) = Xo(N)(C) (2)

These points on Xo(N) are called Heegner points, and the theory of complex multipli-
cation on elliptic curves tells us that they’re actually defined over the Hilbert class field
of K, which is the maximal unramified abelian extension of K and can be gotten by
adjoining the j-invariant of an elliptic curve with CM by Of. These points also enjoy a
nice property with respect to the Artin map called “Galois-equivariance”.

Artg (p) - [w([a])] = m([pa]) (3)
(4)
Now, entering the stage, let E' be an elliptic curve with conductor N. Then by the

Modularity theorem, there exists a unique modular form fr = ag(n)q"™ of weight 2 and
level N satisfying:

#E(F,) =p+1—ag(p) (5)



For such an fg, we the following, which will be important later in stating the Gross-
Zagier formula:

1fell? = /Y o SOy (6)

Another consequence of the modularity theorem is a dominant map ¢g : Xo(N) — E.
We can consider ¢g(vn([a])) € E(Hg). Rather, we consider the following point (which
turns out to not to depend on n, so we drop it from our notation):

Px= Y ¢p(n(a]) (7)

[a]eCl(K)

A priori we know Px € E(Hg), but in fact by Galois equivariance any element of
Gal(Hig/K) = CI(K) simply permutes the ideal classes in the sum, so in fact Px €
E(K). Our goal is to describe the height of the point in terms of an L-function.

3 Heights

Let k/Q be finite and v a place of k. For w = [x,y,2] € P?(k), define the height as
follows:

1
hi(x) = Q] (]:[ maz(|lv, [ylo, IZIU)) (8)

Note that this is well-defined and nonnegative by the product formula, and hg(z) = hj(z)
whenever k' C k. Thus we can define h(z) € P?(k) to be the direct limit over k. For
E C P2, define the canonical height of a point P € E(k):

hp(P) = lim D)

n—ooo 2

9)

Neron and Tate were able to show this height function is well-defined, a quadratic form,
and hp(P) = 0 iff P is a torsion point. With the notion of height in place, we now
should define the relevant L-functions so we can state our theorem.

4 L-functions

Let E/Q be an elliptic curve with conductor N. Intuitively, the conductor measures the
reduction behavior of £ modulo different primes, as in the primes dividing the conductor
are precisely the primes at which E has bad reduction, and the multiplicity of p in N
measures the type of reduction. Now we recall the definition of the L-function of E:

L(s, E/Q) = ] ! M (10)

l1-a “s+pl~2dll] g =
2N e(P)p~s+p v e(P)p




If we define:
A(s, B/Q) = (2m) *N:T(s)L(s, E/Q) (11)
Then it turns out that modularity implies:
A(s, E/Q) = £A(2 — 5, E/Q) (12)

We call the sign in this expression €(F/Q) the root number of E/Q. Also recall that the
Dedekind zeta function, (g admits the following factorization:

Ck(5) = Cals)L(s, xa) (13)

Where yg4 is the quadratic Dirichlet character of period |d|. Consider the following
twisted L-function, L(s, E?/Q), which is also the L-function of the twist of E, given by
y — yVd.

L, B%/Q) = p% 1- aE(p)Xd(p)pl‘s + Xa(p)?p' 2 }_][V 1— aEl(p)p‘s 14
The root number €(E?/Q) = ¢(E, /Q)xa(—N). Now set :
L(s,E/K) = L(s, E/Q)L(s, B*/Q) (15)
Now we wish to compute e(E/K):
«(B/K) = e(E/Q)*xa(—N) (16)
=1 (17)

Since d < 0 and all the primes dividing N split in K. This forces:
L(1,E/K)=0 (18)

The goal of the Gross-Zagier formula is to express L'(1, E/K) in terms of these previously
defined height functions.

5 The Gross-Zagier Formula and Applications

Theorem 5.1. With all the previous notation, we have the following:

32m?|| |
he(Pr) (19)
Ok 2V ]d|degor

In particular, L'(1, E/K) = 0 iff Pk is torsion.

L'(1,E/K) =

A more interesting corollary is the following:



Proposition 5.2. Let E/Q be an elliptic curve with e(E/Q) = —1 and L'(1,E/Q) # 0.
Then E/Q has points of infinite order.

Proof. By a theorem of Waldspruger, we can find a K satisfying the Heegner hypothesis
and with L(1, E4/Q) # 0. Then:

/(1 E/K) = L(L, E/Q)L'(1, E*/Q) + L'(1, E/Q)L(1, E*/Q) (20)
— (1, B/Q)L(1, E*/Q) (21)
£0 (22)

Now, we use the Manin-Drinfeld theorem which says that the difference of any two cusps
if a modular curve is torsion, that is, the following point is torsion:

o5(0) = — /0 o (23)
= / wy + / w (24)
z 0
:/ Wf+/ WNWf (25)
z WNZ
100 WNZ
:/ Wf+/ WNWF (26)
:/ wp — WNW§ (27)
z WNZ
Recall the the involution wy(z) = 3= acts by f(52) = —e2?f(z), and d(52) =
N~1272dz, so that we have the following point is torsion (and in fact independent of
z € Xo(N)(C)).
100 100
qu(O) = / wy + 6/ wy (28)
z WNZ
= ¢p(z) + edp(wnz) (29)

Setting z = vx(@), we have the following:

Torsion = ¢p(vs(@)) + edp(wny - (@) (30)
= 05(1(a)) + edp(yn(an1)) (31)
= Pl + Pyt (32)
= P + eArtg(a?n) - Py (33)

Now, suppose 7 € Gal(H /Q) acts nontrivially on K. Then for an ideal class [a], there is
arestriction o € Gal(H/K) so that 7P +€0 P is torsion. Summing over the translates



in Gal(Hgk /K) gives the following torsion point (since its a sum of torsion points):

Z pT P + €po P = Z TPA”; (0)a] T GPATt;(I (op)[d] (34)
— Py + Py (35)

However, since hg is a quadratic form, we can apply the parallelogram law:

hE(W*EPK) +hE(E+€PK) :2hE(PK)+2hE(§) (36)
= 4hp(Pk) (37)
>0 (38)

Where the last line follows since L'(1, E/K) # 0. Since the second point is torsion, its
height is 0, so we must have:

hg(Px — ePg) > 0 (39)

Thus Px — ePy is nontorsion, and is visibly defined over Q iff € = —1. O



