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1 Birch and Swinnerton-Dyer Conjecture

Consider E : y2 = x3 +ax+b/Q, an elliptic curve over Q. By the Mordell-Weil theorem,
the group E(Q) is finitely generated, so by the structure theorem of finitely generated
abelian groups we have:

E(Q) ∼= Zr ⊕ E(Q)tors

Where r > 0 is called the rank, and E(Q))tors are the elements of finite order. In order
to better understand these groups, we reduce mod p (whenever possible).

Let p > 3 and consider E : y2 = x3 + ax + b/Fp, an elliptic curve over Fp, which
looks a little different when p = 2, 3. By a theorem of Hasse and Weil, we have:

|#(E(Fp))− (p+ 1)| ≤ 2
√
p

If we define Np = #E(Fp) then it is natrual to consider the quantity
Np

p . Numerical date
collected by Birch and Swinnerton-Dyer suggested the following very interesting result:∏

p≤x

Np

p
≈ Clog(x)r

where r is the rank of E/Q. When they approached the experts with their results, they
were told that they should rephrase their results in terms of L-functions, so they did.

Set ap = p+ 1−Np and consider the following:

Lp(E, s) =
1

1− app−s + p1−2s

Then by formally evaluating at s = 1 we have:

Lp(E, 1) =
p

Np

Define L(E, s) =
∏
p Lp(E, s) so that formally we have:

L(E, 1) =
∏
p

p

Np
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The idea behind the Birch and Swinnerton-Dyer conjecture is as follows. Suppose r > 0.
Then there should be lots of points over Q, which should give lots of points mod p,
forcing L(E, 1) = 0, and perhaps if the rank is larger we might believe that the denom-
inators Np are so large that it forces L′(E, 1) = 0, L′′(E, 1) = 0, etc.

We have the following:

Conjecture 1.1. rank(E(Q)) = ord|s=1L(E, s)

To explain the partial progress on BSD, which can be summarized as analytic rank
0 or 1 implies Mordell-Weil rank 0 or 1, we introduce the Gross-Zagier formula.

2 Modular Curves

Let H = {z ∈ C | Im(z) > 0}, and recall this space carries an action of SL(2,Z) by
linear fractional transformations. Now consider:

Γ0(N) = {A ∈ SL(2,Z) |A ≡
(
∗ ∗
0 ∗

)
(mod N)} (1)

It is well known that Γ0(N)/H := Y0(N) is a Riemann surface with finitely many cusps,
and whose compactification is an algebraic curve that can be defined over Q. Away
from the cusps, X0(N) parametrizes isogenies of elliptic curves (φ : E → E′) with
ker(φ) ≡ Z/(n). The covering π : X0(N) → X0(1) corresponds to (C/(Z + τZ) → C/
( 1
NZ + τZ)))→ C/((Z + τZ))

Now fix an imaginary quadratic field K = Q(
√
−d), and choose N with the property

that the primes dividing N split in K. Such an N is said to satisfy the Heegner hypoth-
esis. Then clearly we can find an ideal n with OK/n ≡ Z/(N). Then for any a ⊂ OK ,
we have the covering (C/a→ C/n−1a) ∈ X0(N)(C). Dilating a by anything in K× gives
the same elliptic curve, thus giving a well-defined map on ideal classes. We have:

γn : Cl(K)→ X0(N)(C) (2)

These points on X0(N) are called Heegner points, and the theory of complex multipli-
cation on elliptic curves tells us that they’re actually defined over the Hilbert class field
of K, which is the maximal unramified abelian extension of K and can be gotten by
adjoining the j-invariant of an elliptic curve with CM by OK . These points also enjoy a
nice property with respect to the Artin map called “Galois-equivariance”.

ArtK(p) · [γn([a])] = γn([pa]) (3)

(4)

Now, entering the stage, let E be an elliptic curve with conductor N . Then by the
Modularity theorem, there exists a unique modular form fE = aE(n)qn of weight 2 and
level N satisfying:

#E(Fp) = p+ 1− aE(p) (5)
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For such an fE , we the following, which will be important later in stating the Gross-
Zagier formula:

||fE ||2 =

∫
Y0(N)

|f(z)|2dxdy (6)

Another consequence of the modularity theorem is a dominant map φE : X0(N) → E.
We can consider φE(γn([a])) ∈ E(HK). Rather, we consider the following point (which
turns out to not to depend on n, so we drop it from our notation):

PK =
∑

[a]∈Cl(K)

φE(γn([a])) (7)

A priori we know PK ∈ E(HK), but in fact by Galois equivariance any element of
Gal(HK/K) ∼= Cl(K) simply permutes the ideal classes in the sum, so in fact PK ∈
E(K). Our goal is to describe the height of the point in terms of an L-function.

3 Heights

Let k/Q be finite and v a place of k. For w = [x, y, z] ∈ P2(k), define the height as
follows:

hk(x) =
1

[k : Q]
log

(∏
v

max(|x|v, |y|v, |z|v)

)
(8)

Note that this is well-defined and nonnegative by the product formula, and hk(x) = h′k(x)
whenever k′ ⊂ k. Thus we can define h(x) ∈ P2(k) to be the direct limit over k. For
E ⊂ P2, define the canonical height of a point P ∈ E(k):

hE(P ) = lim
n→∞

h(n · P )

n2
(9)

Neron and Tate were able to show this height function is well-defined, a quadratic form,
and hE(P ) = 0 iff P is a torsion point. With the notion of height in place, we now
should define the relevant L-functions so we can state our theorem.

4 L-functions

Let E/Q be an elliptic curve with conductor N . Intuitively, the conductor measures the
reduction behavior of E modulo different primes, as in the primes dividing the conductor
are precisely the primes at which E has bad reduction, and the multiplicity of p in N
measures the type of reduction. Now we recall the definition of the L-function of E:

L(s, E/Q) =
∏
p 6|N

1

1− aE(p)p−s+ p1−2s

∏
p|N

1

1− aE(p)p−s
(10)
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If we define:

Λ(s, E/Q) = (2π)−sN
s
2 Γ(s)L(s, E/Q) (11)

Then it turns out that modularity implies:

Λ(s, E/Q) = ±Λ(2− s, E/Q) (12)

We call the sign in this expression ε(E/Q) the root number of E/Q. Also recall that the
Dedekind zeta function, ζK admits the following factorization:

ζK(s) = ζQ(s)L(s, χd) (13)

Where χd is the quadratic Dirichlet character of period |d|. Consider the following
twisted L-function, L(s, Ed/Q), which is also the L-function of the twist of E, given by
y 7→ y

√
d.

L(s, Ed/Q) =
∏
p6|N

1

1− aE(p)χd(p)p−s + χd(p)2p1−2s

∏
p|N

1

1− aE(p)p−s
(14)

The root number ε(Ed/Q) = ε(E, /Q)χd(−N). Now set :

L(s, E/K) = L(s, E/Q)L(s, Ed/Q) (15)

Now we wish to compute ε(E/K):

ε(E/K) = ε(E/Q)2χd(−N) (16)

= −1 (17)

Since d < 0 and all the primes dividing N split in K. This forces:

L(1, E/K) = 0 (18)

The goal of the Gross-Zagier formula is to express L′(1, E/K) in terms of these previously
defined height functions.

5 The Gross-Zagier Formula and Applications

Theorem 5.1. With all the previous notation, we have the following:

L′(1, E/K) =
32π2||fE ||2

|O×K |2
√
|d|degφE

hE(PK) (19)

In particular, L′(1, E/K) = 0 iff PK is torsion.

A more interesting corollary is the following:
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Proposition 5.2. Let E/Q be an elliptic curve with ε(E/Q) = −1 and L′(1, E/Q) 6= 0.
Then E/Q has points of infinite order.

Proof. By a theorem of Waldspruger, we can find a K satisfying the Heegner hypothesis
and with L(1, Ed/Q) 6= 0. Then:

L′(1, E/K) = L(1, E/Q)L′(1, Ed/Q) + L′(1, E/Q)L(1, Ed/Q) (20)

= L′(1, E/Q)L(1, Ed/Q) (21)

6= 0 (22)

Now, we use the Manin-Drinfeld theorem which says that the difference of any two cusps
if a modular curve is torsion, that is, the following point is torsion:

φE(0) = −
∫ i∞

0
ωf (23)

=

∫ i∞

z
ωf +

∫ z

0
ωf (24)

=

∫ i∞

z
ωf +

∫ i∞

wNz
wNωf (25)

=

∫ i∞

z
ωf +

∫ wNz

i∞
wNωf (26)

=

∫ i∞

z
ωf −

∫ i∞

wNz
wNωf (27)

Recall the the involution wN (z) = −1
Nz acts by f(−1Nz ) = −εz2f(z), and d(−1Nz ) =

N−1z−2dz, so that we have the following point is torsion (and in fact independent of
z ∈ X0(N)(C)).

φE(0) =

∫ i∞

z
ωf + ε

∫ i∞

wNz
ωf (28)

= φE(z) + εφE(wNz) (29)

Setting z = γn(a), we have the following:

Torsion = φE(γn(a)) + εφE(wN · γn(a)) (30)

= φE(γn(a)) + εφE(γn(an−1)) (31)

= P[a] + εPa−1n (32)

= P[a] + εArtK(a−2n) · P[a] (33)

Now, suppose τ ∈ Gal(HK/Q) acts nontrivially on K. Then for an ideal class [a], there is
a restriction σ ∈ Gal(H/K) so that τP[a]+εσP[a] is torsion. Summing over the translates
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in Gal(HK/K) gives the following torsion point (since its a sum of torsion points):∑
ρ∈Gal(HK/K)

ρτP[a] + ερσP[a] =
∑

ρ∈Gal(HK/K)

τPArt−1
K (ρ)[a] + εPArt−1

K (σρ)[a] (34)

= PK + εPK (35)

However, since hE is a quadratic form, we can apply the parallelogram law:

hE(PK − εPK) + hE(PK + εPK) = 2hE(PK) + 2hE(PK) (36)

= 4hE(PK) (37)

> 0 (38)

Where the last line follows since L′(1, E/K) 6= 0. Since the second point is torsion, its
height is 0, so we must have:

hE(PK − εPK) > 0 (39)

Thus PK − εPK is nontorsion, and is visibly defined over Q iff ε = −1.
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