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1 Motivation

Recall Dirichlet’s theorem from elementary number theory.
Theorem 1.1. For (a,m) = 1, there are infinitely many primes p = a (mod m).

The point of this exposition is to present a theorem which generalizes the above result
and has many applications that will help us later in the seminar. Then, as always, we
will reprove quadratic reciprocity.

Suppose L/K is a (Galois) extension of number fields with Galois group G. Suppose ‘B
is a prime of L lying over p a prime of K. Set Or /B = Fy and O /p = F,. Then recall
the following exact sequence:

1 — I(/p) — D(P/p) — Gal(Fy/F,) — 1

Now we remind the reader of these objects and maps. We've defined D(B/p) = {0 €
Glo(B) = (P)}. Given an element o € D(PB/p), this gives an automorphism of O, fix-
ing B, which is an automorphism of Fy, and fixes Fy, giving an element of Gal(Fg/Fy).
It is a standard fact from algebraic number theory that this map is surjective. Then
we’ve chosen to define I(3/p) to be the kernel of this surjection. It turns out that this
is equivalent to defining I(P/p) = {0 € D(P/p)| o(a) = a (mod P), Va € OL}.

More importantly for us, when p is unramified in L, we have I(3/p) = 1. This gives
an isomorphism between D(P/p) and Gal(Fy/Fy). It is well known that Gal(Fyp/F,)
is cyclic of order f(8/p), and in fact has a canonical generator given by z +— zV®)
where N(p) = |Fy| := ¢. Lifting this canonical generator along our isomorphism to
D(B/p) gives an element which we call Froby, which is characterized by the property
that Vo € Or, we have Frobyp(a) = af (mod pOrp).

Since we’re interested in using these Frobenius elements to understand extensions of
K in terms of the arithmetic of K, it would be a bit disappointing if these Frobenius
elements depended too much on our choice of /p.



Exercise 1.2. Show that if P and B* are two primes over p, let o € G be such that
o(P) = P*. Show Froby: = o o Frobgoo .

By the last exercise, when L/K is abelian, there is no dependence at all on the choice
of B, and we can make sense of Frob,. In fact, the decomposition groups D(P/p) also
only depend on p, which is similarly not hard to show.

2 Examples

Consider Q(7)/Q. Here, the only ramified prime is 2. Otherwise, p splits < p =1
(mod 4) and p is inert <= p = 3 (mod 4). Since D(p) is trivial in the split and
ramified case and is equal to G otherwise, it is clear what the Frobenius elements are.
If we write G = {1} then Frob, = 1 when p =1 (mod 4) and Frob, = —1 otherwise.
It is very useful to write Frob, = ( =%).

There is a more honest and perhaps more enlightening way to see Frob, = (%) that
uses the property satisfied by Frobenius. Let p > 2 be prime, and suppose we want to
know which element o € G acts like raising to the p** power modulo p. That is, which
element is a lift of Frobenius? Well:

(a+bi)? =a+ biP

Since ¥ = (%), we see that when p =1 (mod 4), then o = 1 is the right automorphism,

and conversely for the other case.
Exercise 2.1. Generalize the above to Q(\/&), d squarefree.

Now consider Q(¢,,)/Q. Then it is well known that the primes that ramify are pre-
cisely those dividing n. Another well known fact is that G can be canonically identified
with (Z/nZ)*, with an element m being given by the automorphism determined by
Cn = . So for (p,n) = 1, we want to compute Frob,. It is straightforward to check
that the automorphism which lifts Frobenius in this case is p € (Z/nZ)*. Cyclotomic
fields are very nice in the sense that their ramification and Frobenius elements are very
explicit, which will be very handy in what follows.

3 Quadratic Reciprocity

We can now give a very conceptual and clean proof of quadratic reciprocity.

Theorem 3.1. For p,q distinct odd primes, we have (%) (%) = (—1)%%

Proof. 1t is straightforward to check that this is equivalent to (%) = (%), where

p* = _?1 p. Next, using either ramification theory and basic Galois theory, or using

the theory of Gauss sums, we have the following tower of fields and Frobenius elements.



Q)

FTObq =4q Q(\/I?)

Frob, = (%)

O]

If we know that F'rob, € (Z/pZ)* restricts to the Frobenius element in {£1, then
we would be done, because ¢ restricts to (%). Showing that Frobenius elements restrict

correctly is not difficult since Frobenius elements were defined canonically, and as such
behave in a functorial way.

4 Chebotarev Density Theorem

We can rephrase Dirichlet’s theorem about primes in arithmetic progressions in terms
of Frobenius elements in an obvious way.

p=a (modm) <= Frob,=a€Z/mZ

Thus, proving Dirichlet’s theorem comes down to understanding the distribution of
Frobenius elements. As such it is natural to study the distribution of Frobenius ele-
ments for arbitrary abelian extensions, and hopefully obtain results similar to Dirichlet’s
theorem. This is precisely what the Chebotarev density theorem tells us.

Theorem 4.1. For L/K an abelian extension of number fields, Frob, are equally dis-
tributed in G = Gal(L/K).

Remark 4.2. The term equally distributed has a meaning which we will not make pre-
cise.

We have created a machine that given arithmetic data of K (primes), produces
elements of a galois group G = Gal(L/K). Now we’re going to put these Frobenius
elements together to construct the Artin map. Suppose now for simplicity of expoisiton
that all the primes of K are unramified in L, and that L/K is abelian as usual. Then
we have the following:

AT‘tL/KIK — Gal(L/K)

This map is defined by Arty, g (p) = Frob, and extended to Ix by multiplicativity. By
the Chebotarev density theorem, this map is surjective, and as such I /Ker(Arty, / K) =
Gal(L/K). This is interesting because the left hand side is purely arithmetic data of K



and the right is information about the extensions of K. This suggests that we might be
able to understand extensions of K by studying subgroups (possible kernels of the Artin
maps) of Ix. This will be covered in later lectures where we discuss Artin reciprocity.
Before we finish we present a theorem.

Theorem 4.3. For K a number field, there exists L, the mazximal unramified abelian
extension of K with Ker(Arty i) = Pk, the subgroup of principal ideals. L is called
the Hilbert class field of K.

Let K be a number field, and L its Hilbert class field. Then C(Ok) = Gal(L/K).
Thus, the prime ideals of K are equally distributed in the ideal classes.

5 Proof of Dirichlet's Theorem

Rather than prove the Chebotarev density theorem, we prove Dirichlet’s theorem, since
the general proof of the Chebotarev density theorem ends up reducing to Dirichlet’s
theorem in some sense, and the ideas present in Dirichlet’s theorem already demonstrate
the general theory very well.

Let x : (Z/mZ)* — C* be a character which we extend to Z by 0. Define an L-function

as follows. ()
x(n
L(s,x) = YR

n

For m = 0, and x the trivial character we obtain L(s,chi) = ((s), the Riemann zeta
function. For m > 0 and yx trivial, we get a slightly deficient Riemann zeta function

¢(s) - 1_5@,5. Now we present a general fact about L-functions without proof:
Lemma 5.1. Let L(s,x) = > %, and suppose A, = _, ay, is bounded as a function

of n. Then L(s,x) converges for Re(s) > 0.

The L-functions as in the above lemma arise when y is a non-trivial character.
Whenever y is trivial, we only get convergence for Re(s) > 1. Now we use the Euler
product for these L-functions to manipulate them into a more useful form before we



proceed with the proof.
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The important thing is that (s, x) converges for Re(s) > % Now we proceed with the
proof of Dirichlet’s theorem.

Theorem 5.2. For (a,m) = 1, there are infinitely many primes p = a (mod m).

Proof. Consider the following sum over the characters x of (Z/mZ)*:
X
DNCRRIVED TR pob < RaTent) 0

:ZEZX@“ +Zx ~'B(s,x) (2)
=¢m) >, p* +6(ij) (3)

p=a (mod m)

In the above, (s, x) converges at s = 1. To deduce the theorem we need to know that
L(1,x) # 0 whenever x is nontrivial. Assuming this fact for the meantime, then since
L(s, xo) diverges for yo the trivial character, we see that the LHS of (1) must diverge
at s = 1, which says that there must be infinitely many primes p = a (mod m), and we
are done. O

There are various ways of proving L(1,x) # 0 for x # xo, and this fact certainly
constitutes the main analytic meat of the proof. There are ways of doing this using
certain techniques from analysis, as well as one using the analytic class number formula.



