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Given an elliptic curve E over a non-Archimedean local field K, one associates
to E over K a two-dimensional complex representation o K of the Weil-Deligne
group of K, derived from the {-adic Galois representations on the Tate modules
of E. We shall define o}; /K precisely, and shall also explain how the local factors
associated to o, encode certain data about E. Intended for a reader familiar
with elliptic curves but not with the Weil-Deligne group, our exposition amounts to
a glossed transcription (possibly marred by interpolation) of portions of the papers
of Tate [13] and Deligne [3]. For rectifications and omitted proofs the reader will
have to consult the original texts.
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Part I: The Weil-Deligne Group

1. The Weil group

Let k be a finite field of characteristic p and cardinality ¢, and let k¥ denote an
algebraic closure of k. The Weil group W(k/k) of k is the infinite cyclic subgroup of
Gal(k/k) generated by the Frobenius automorphism z — z9. Nowadays it is actu-
ally the inverse of the Frobenius automorphism which is regarded as the canonical
generator of W(k/k), and so it is the latter which will get a special notation: ¢.
Thus if n is a positive integer and k,, is the unique subfield of k of degree n over k
then ¢(z) = z9"”" for z € k,. We make W(k/k) into a topological group by giving
it the discrete topology.

Next consider a non-Archimedean local field K with residue class field k. Write
K for a separable algebraic closure of K and K,,; for the maxima! unramified
extension of K contained in K. The inertia subgroup of Gal(K/K) is the group
I = Gal(K/Kyy,). Identifying k with the residue class field of K (or of Kyne), we
have an exact sequence

1 — I — Gal(K/K) = Gal(k/k) — 1,
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where 7 : Gal(K/K) — Gal(l:c/k) is the decomposition map. We define W(K/K)
to be the inverse image of W(k/k) under m:

W(K/K) = n= (W(k/k)).
Thus W(K /K) fits into an exact sequence
1— I —WK/K)— W(k[k) — 1,

and we have
WE/K)= | "1
nez

for any & € Gal(K/K) such that 7($) = ¢. Such an element & is called an inverse
Frobenius element of Gal(K/K); unlike ¢, it is not unique but only unique up to
multiplication by an element of I. We define a topology on W(K/K) by requiring
that I be open in W(K/K), that the relative topology on I from W(K/K) coincide
with the relative topology from Gal(K/K), and that left multiplication by ¢ be a
homeomorphism. Thus W(K /K has the coarsest topology for which the projection
7 : WK /K) — W(k/k) and the inclusion ] — Gal(K/K) are both continuous,
and for which W(K/K) is a topological group. The key point to keep in mind
about this topology is that while the identity in W(K/K) has a neighborhood basis
consisting of open subgroups of I, the open subgroups of finite indez in W(K/K)
are the subgroups W(K/L) (= W(K/K) 0 Gal(K /L)), where L runs over finite
extensions of K in K. This should be contrasted with the fact that for a compact
group like I or Gal(K/K), every open subgroup has finite index.

2. Representations of the Weil group

By a representation of W(K/K) we mean a continuous homomorphism o :
W(K/K) — GL(V), where V is a finite-dimensional complex vector space. We
say that o is ramified or unramified according as o|I is nontrivial or trivial. If
V is one-dimensional then we call o a character (or a quasicharacter, if we wish
to emphasize that ¢ is not necessarily unitary). We freely identify characters of
W(K /K) with characters of K* by composing with the Artin isomorphism

K* = W(K/K)*®,

where W(K /K)?® stands for W(K/K) modulo the closure of its commutator sub-
group. It should be added that the “Artin isomorphism” referred to here is the
Artin automorphism of [3], equal to the classical Artin isomorphism precomposed
with the automorphism z — z~! of K*: thus a uniformizer of K is sent to the
image in W(K/K)® of an inverse Frobenius element of W(K/K).

The requirement that a representation o : W(K/K) — GL(V) be continuous
has the following significance: By a standard property of real or complex Lie groups,
there is an open neighborhood U of the identity in GL(V') which contains no non-
trivial subgroups of GL(V). Since ¢ is continuous, 0 ~*(if) is an open neighborhood
of the identity in W(K/K) and so contains an open subgroup J of I. Then o(J)
is a subgroup of GL(V) contained in U, hence equal to the trivial subgroup. Thus
the continuity of ¢ implies that o is trivial on an open subgroup of I. Conversely,
if o : W(K/K) — GL(V) is an arbitrary homomorphism which is trivial on an
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open subgroup J of I, then the inverse image of any subset of .GL(V) is a union of
cosets of J and is therefore open. Hence o is continuous.

To summarize, a homomorphism ¢ : W(K/K) — GL(V') is a representation
if and only if it is trivial on an open subgroup of I. By way of illustration, suppose
that L is a finite Galois extension of K. Then I NW(K/L) is an open subgroup of
I and

W(K/K)/W(K/L) = Gal(L/K),
so that any representation of Gal(L/K) can be viewed as a representation of
W(K/K). Such representations of W(K/K) are said to be of “Galois type”; they
are precisely the representations of W(K/K) with finite image. As an example of
a representation which is not of Galois type we have the quasicharacter

w: W(K/K)— C*%,

defined by the cenditions w(I) = {1} (i.e. w is unramified) and w(®) = q~'. More
generally, for s € C the quasicharacter w® is of Galois type if and only if ¢° is a
root of unity.

PROPOSITION. An irreducible representation o of W(K/K) has the form o =
p ® w?, where p is of Galois type and s € C.

Proor. (3, 4.10].

Given a finite extension L of K, we write indg/x and resp/k for the induction
and restriction functors corresponding to W(K/K) and its subgroup of finite index
W(K/L). Also, if ¢ is any representation of W(K /K) then we denote by [o] the
class of ¢ in the Grothendieck group of virtual representations of W(K/K). Since
not all representations of W(K/K) are semisimple, we should add that the equiva-
lence relation defining the Grothendieck group is here understood to be additivity
across short exact sequences, not additivity across direct sums. Thus [o] is equal
to the sum of the classes of the irreducible constituents in a Jordan-Holder series
for o, and the Grothendieck group is isomorphic to the free abelian group on the
set of isomorphism classes of irreducible representations.

If p is a representation of W(K/K) of Galois type, then the Brauer induction
theorem allows one to write [p] as an integral linear combination of classes of the
form (indp,x €], with £ one-dimensional. On the other hand, according to the
proposition just stated, every irreducible representation has the form p ® w® with p
of Galois type. Since indp/k (§)®w’® = indL/}((ﬁ resy x w’), and since the classes of
irreducible representations span the Grothendieck group of W(K/K), one deduces
a version of Brauer induction for W(K/K):

COROLLARY 1. Let o be any representation of W(K/K). Then we can write

o] = D crxlindr/x xl;
(Lyx)

where (L,x) runs over pairs consisting of a finite extension L of K and a qua-
sicharacter x of W(K /L), and where cr5 is an integer (= 0 for almost all (L, x))-

Let us denote the trivial representation of W(K/K) by 1k, and an expression
such as [indz/x x] — [ind L,k x'] simply by lindL;k(x — x')]- The following variant
of Corollary 1 is due to Deligne:
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COROLLARY 2. .Let o be any representation of WIK/K). Then we can write

[0} = dim(o)[1k] + Z cLxx [indp/g (x = X)),
(Lxx')

where (L, x, x') runs over triples consisting of a finite extension L of K and a pair
of quasicharacters x, x' of W(K /L), and where CL,x,x' 15 an integer (= 0 for almost
“all (L, x, x"))-

PRrooOF. (3, 1.5).

3. The Weil-Deligne group and its representations

The Tate modules of an elliptic curve over K with potential multiplicative re-
duction afford ¢-adic representations of Gal(K/K) which are not trivial on an open
subgroup of I and which therefore do not correspond to a complex representation
of W(K/K). Thus one is forced to consider representations of a larger group, the
Weil-Deligne group W'(K/K).

Recall that w denotes the unramified character of W(K/K) taking the value
g~" on any inverse Frobenius element. We define W' (K/K) to be the semidirect
product

-1

W/(K/K)=W(K/K)xC,
where the action of W(K/K) on C is

(3.1) 9297  =w(g)2 (9 € WK/K),z €C).

We give W (K /K) the product topology corresponding to its set-theoretic structure
as a cartesian product.

If L C K is a finite extension of K and &, is an inverse Frobenius element of
W(K/L), then -
&, € gsf(L/K)I,
where f(L/K) is the residue class degree of L over K. Hence

w(Pr) = qp*

with g7, = ¢/(Z/K)_ Thus in a self-explanatory notation we can write
wW(K/L) = w,

and we may view W/(K /L) as a subgroup of W (K/K).
By a representation of W/(K/K) on a finite-dimensional complex vector space
V we mean a continuous homomorphism

o' :W(K/K) — GL(V)

such that the restriction of ¢’ to the subgroup C of W'(K/K) is complex analytic.
To give such a representation o’ is the same as to give a pair (¢, N), where ¢ is a
representation of W(K/K)onV and N is a nilpotent endomorphism of V satisfying

(3:2) a(9)No(9)' =w(g)N (9 € W(K/K)).
One obtains ¢’ from (o, N) by putting
(3.3) o'(gz) = a(g)exp(zN) (g€ W(K/K),z € C),
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the function so defined being a homomorphism by virtue of (3.1) and (3.2). In the
other direction, we recover (o, N) from o’ via the formulas

(3.4) o = o' |W(E/K)
and
(3.5) N = (loga’(2))/z (2 € C* arbitrary).

The lstter formula requires some words of explanation:

First, if U is any unipotent automorphism of V, then by logU we mean the
usual power series in U — 1, so that log U is nilpotent. We shall verify in a moment
that o'(z) is in fact unipotent for every z € C.

Second, a unipotent automorphism has a unique unipotent n-th root for every
integer n > 1, and hence a unique unipotent t-th power for every t € Q. Since o’
is a homomorphism we have

log o’ (t20) = log(0” (20)") = tlog o’(20)

for t € Q and 2z € C. By continuity, the identity log o (tzp) = tloga’(zo) holds for
all t € R, and in fact for all t € C by complex analyticity. Taking zp =1 and t = 2,
we see that the right-hand side of (3.5) is independent of z, as claimed.

It remains to check that o'(2) is unipotent. Taking g = ¢~'in (3.1), we see
that the linear transformations o'(z) and o'(2)? are similar. It follows by iteration
that if A is an eigenvalue of ¢’(z), then so is A9" for every integer n > 0. Now o’(z)
has at most d distinct eigenvalues, where d = dim ¢’, so that

no

A0 = AT
for some pair of integers (™o, n0) satisfying 0 < mo < ng < d. Thus

r= ] (@ -d™
0<m<n<d

is a positive integer independent of z such that every eigenvalue of o’(z) is an -
th root of unity. Applying this remark to o'(z/r) in place of o'(z), and writing
o'(z) = o'(z/r)", we conclude that every eigenvalue of o'(z) is 1, as desired.

This completes our verification that representations o' of W!/(K/K) are in one-
to-one correspondence with pairs (o, N ) satisfying (3.2). Henceforth we simply
identify ¢’ with the corresponding pair (o,N) and write ¢’ = (o, N ). We say
that o' is unramified if ¢ is unramified and N = 0. Otherwise we say that o' is
ramified. Also, if o is any representation of W (K/K) then we identify o with the

- representation (o,0) of W/(K/K).

In the following proposition we record the effect on (o, N) of some standard
operations on o’.

PROPOSITION. Let o' = (o, N) and 7' = (7, P) be representations of W/ (K/K)
on vector spaces V and W respectively.
G) o’ &7 =(c@®T,N@®P).
(ii) o'®1 =(0®T, N®1+1®P), where 1 denotes the identity automorphism
of Vor W.
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(iii) Let 0™ denote the contragredient representation on the dual space V* of
V. Then o™ = (*,N*), where

(@*(9)f)(v) = f(o(g2)w)
and
(N*f)(v) = ~f(Nw)
forge WK/K), fe V* andvev,

(iv) Let L denote a finite extension of K, and write resp/k andindp, g for the
restriction and induction Sfunctors corresponding to the group WI(K/K)
and its subgroup of finite indez_)’V’(K/L) (or to the group W{I?/K) and
its subgroup of finite index W(K /L), as appropriate). Let p' = (p, M) be
a representation of W/ (K /L) on a vector space U. Then

resy /o’ = (resp/k o, N)

and
indy /g p' = (indp,x p, Mg, k),

where My i is defined as follows: Put G = W(K/K) and H = W(K/L),
and viewU as a C[H]-module via the representation p. Take ClG] Ocim U
as the space ofindg g p. Then

Mrk(g®u)=w(g) (g Mu)

forgeGanduecU.
PROOF. The formulas are a straightforward consequence of the definitions. As
an example, let us verify (ii). Put S = expN and T' = exp P. Then

(3.6) log(S®T) =log ((S® 1eT)) =log(Se® 1) +log(1® T).

Writing the identity automorphism of V @ W as 1 ® 1, we have
(=)

log(S®1) =Y~

n>1

(S®1—1®1)"=(logS)®1=N®1;

similarly, log(1 ® T) = 1® P. Substitution in (3.6) gives (ii).

4. The Weil-Deligne group and ¢-adic representations

Let £ denote a prime different from p. By an ¢-adic representation of Gal(K/K)
Wwe mean a continuous homomorphism

op: Gal(K/K) — GL(Vp),

where V; is a finite-dimensional vector space over Q. In the first instance it is £-adic
representations of Gal(K/K), not complex representations of W’ (K/K), which are
the representation-theoretic output of arithmetical algebraic geometry. However, if
we fix a field embedding ¢ : Q) — C, then there is a simple recipe for converting
an f-adic representation oy of Gal(K/K ) into a complex representation oy, of
W’(!?/K). The construction, due to Grothendieck and Deligne, is summarized in
the next proposition. The essential point.is that there is a canonical way to associate
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to o} a pair (o¢, N¢) consisting of a homomorphism o : W(K/K) — GL(Vy) trivial
on an open subgroup of I and a nilpotent endomorphism N, of V; such that
(4.1) oe(g)Neoe(9) ™! = w(g)Ne
for ¢ € W(K/K). Composing o, with the extension-of-scalars map GL(V;) —
GL(C Q. Ill)a we obtain
o1, : WEK/K) — GL(C ®, Vp);

and applying the extension-of-scalars map End(V;) < End(C®, V) to N we obtain

) Ng,, € End(C ®, V).
Since oy, is continuous by construction and the compatibility relation (3.2) follows
from (4.1), we see that the pair (g¢,., Ne,.) is actually a representation of W' (K/K).
This is 07 .

In practice, if one starts with a smooth pro jective variety X over K and takes oy
to be the representation associated to £-adic cohomology of X in some dimension,
then neither ¢ nor £ can be chosen canonically, and one would therefore like to
verify that the isomorphism class of O'Z’L is independent of £ and ¢. In the case
where X is an elliptic curve this verification is elementary and will be carried out in
Sections 14 and 15. But to start with, we would like to describe the correspondence
o} + (o¢, N¢) more precisely, and for this we need to make two further choices: The
choice of an inverse Frobenius element @ and the choice of a nontrivial continuous
homomorphism ¢ : I — Q¢. Such a homomorphism is unique up to multiplication
by an element of Q;', for if Kiame i8 the maximal tamely ramified extension of Kyne

inside K then the group P = Gal(K/Kiame) is a pro-p-group, and
1/p=T]z.
T#P
Hence up to a scalar multiple t; is just projection on the factor Zy. By Kummer

theory we have ,
gig~! =9 (mod P)

for g € W(K/K) and i € I, whence
(4.2) te(gig™") = w(g)te(i).

PROPOSITION. Let o} : Gal(K/K) — GL(V¢) be an £-adic representation.
(i) There is a unique nilpotent endomorphism Ny of Vg such that

og(i) = exp(te(i)Ne)
for i in some open subgroup of I. Furthermore,
4(9)Neay(9) ™" = w(g)Ne

for g € W(K/K). We have Ny = 0 if and only if o} is trivial on an open

subgroup of 1. _
(i) The function o¢ : W(K/K) — GL(V;) defined by

oe(g) = oh(g)exp(—te(i)Ne) (g=FMimeZ,i€l)

is a homomorphism and is trivial on an open subgroup of I.
(i) oe(g)Neoe(g)™ = w(g)Ne for g € W(K/K).
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(iv) The isomorphism class of the representation
U;,l/ = (Glﬂz’N@.t)

us independent of the choice of & and ts.

PROOF.

(i) For the first statement see [11, p. 515]. The second statement follows
from (4.2) and the uniqueness of Ny, while the third statement also follows
from the uniqueness of N,.

(ii) Direct calculation using the given formula. Of course the triviality of o
on an open subgroup of I follows from the first statement in (i).

(iii) To prove this ideniity substitute the formula for a¢(g) given in (ii) and

apply the second statement in (1).

(iv) [8, Lemma 8.4.3].

GENERALIZATION. By a A-adic representation of Gal(K/K) we mean a contin-
uous homomorphism ¢} : Gal(K/K) — GL(Vy), where V) is a finite-dimensional
vector space over a finite extension Ey of Q. Let ¢ be an embedding of E, in C
and let ¢y be as before. The preceding proposition remains true if we replace the
subscript £ on Vp, o}, a4, Ny, Ot O, and Ng, by A.

5. Indecomposable representations and special representations

A representation ¢’ = (o, N) of W/(K/K) is called admissible (or P-semisimple)
if o is semisimple; it is called indecomposable if the space of o’ cannot be written as
a direct sum of proper subspaces invariant under W' (K/K). Of course a subspace
is invariant under W/(K/K) if and only if it is invariant under both W(K/K) and
N.

We mention in passing that ¢’ is admissible if and only if o(®) is a semisimple
linear transformation for some inverse Frobenius element &. Indeed the latter con-
dition means that the restriction of o to the subgroup generated by @ is semisimple;
but @ generates a subgroup of finite index in W(K/K)/ker o, and if G is any group
and H a subgroup of finite index then a finite-dimensional complex representation
of G is semisimple if and only if its restriction to H is semisimple ([2, Ch. IV, §5,
Prop. 1, p. 82]). This is the reason for the terminology “@-semisimple”.

Let n be a positive integer, and let ey, €1,...,€n—1 denote the standard basis for
C". The special representation of dimension n, denoted sp(n), is the representation
o' = (0, N) defined by the formulas

a(gle; =w(g)e; (9e WEK/K);0<j<n-1)

and
Nej=¢€jy1 (0<j<n-2),
Ne"_l =0.
The kernel of N, namely Ce,,_,, is an invariant subspace, so that sp(n) is reducible
if n > 1. However, precisely because ker N has dimension one, sp(n) is indecompos-
able: if C* = U @ W were a nontrivial decomposition of C*, then both U N ker N
and W Nker N would be nontrivial, because N is nilpotent. Thus sp(n) is an
example of an admissible, indecomposable, n-dimensional representation which for
n > 1 is reducible.
More generally, let 7 be an irreducible representation of W(K/K), and consider
the representation 7 ® sp(n) of W/(K/K). (Recall that  is identified with the
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representation (m,0) of W/(K/K), and that a formula for the tensor product is
given in part (ii) of the proposition of Section 3. ) If we write m @ sp(n) = (p, M),
then p is the direct sum of the irreducible representations 7 ® Ww(0<j<n-1)
and therefore 7 ® sp(n) is admissible. We claim that it is also indecomposable.
Indeed, if V is the space of m ® sp(n), then a nontrivial decomposition V=U® W
would give a decomposition

(5.1) ker M = (U Nker M) & (W Nker M),

necessarily nontrivial because N is nilpotent. But the representation of W(K/K)
on ker M afforded by p is isomorphic to 7 ® w1, which is irreducible. Hence
(5.1) gives a contradiction. Therefore 7 ® sp(n) is an admissible indecomposable
representation, and in fact the most general such: '

PROPOSITION. Every admissible indecomposable representation of W' (K/K)
is equivalent to a representation of the form m ® sp(n), where w is an irreductble
representation of W(K /K) and n is a positive integer.

PROOF. [4, Prop. 3.1.3].

As an application, let us prove that Schur’s Lemma holds in this context.

COROLLARY 1. Suppose that o' is an admissible indecomposable representation
of W/(K/K) on a vector space V. Let T be a linear endomorphism of V' commuting
with the action of W(K/K). Then T is a scalar multiplication.

PROOF. Write ¢/ = (0, N) = m®sp(n) and V = U ® W, where U is the space
of m and W = C" is the space of sp(n). Then o is the direct sum of the irreducible
representations 7 ® w? for 0 < j < n—1, corresponding to the subspaces U®e;
of U ® W. Since the representations 7 ® w’ are pairwise nonisomorphic, the usual
form of Schur’s Lemma shows that T|U ®e; is a scalar c;. The equation TN = NT
then implies that ¢; = ¢j41 for 0 < j < n— 2, whence all the c¢; are equal.

COROLLARY 2. Let o' be an admissible representation of W'(K/K). Then o
has a decomposition of the form

8
o' = @Tfj ® sp(n;),
i=1

where ; is an irreducible representation of WK/K) and nj is a positive integer.

Furthermore, if
t

@ ; ® sp(m;)
j=1
s another such decomposition, then s = t, and after renumbering the summands
we have 7; = p; and n; = m;.
PROOF. Induction on the dimension of o’ shows that ¢’ is a direct sum of
indecomposables For uniqueness, write o/ = (o, N) and put n = inf{m € Z,m >
: N™ = 0}. If n = 1 then N = 0, ¢’ is semisimple, and the uniqueness is
1mmed1ate If n > 1, then in the Grothendieck group of virtual representations of
W(K/K) we can write

[0] - [ker N*"1 = ) [m]

nj=n
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and

[0] = [ker N*~1 = $™ [p],

mji=n

*where we identify ker N*~1 with the corresponding representation of W(K /K ).
After renumbering, we conclude that n; = n if and only if m,;

= n and that 7; P
whenever n; = m; == n. Next consider the decompositions

[ker N™~1] - [ker N"~2] = 3 Il + > i ®w]

nj=n—1 n;=n

and

[ker N"~1] — [ker N™~2] = > el ) + Y eyl

mj=n—1 mij=n

Since we already know that 7j = pj when n; or m; is n, we now conclude (after
renumbering) that nj =n—1 if and only if mj =n—1, and that m; = p; whenever
j =m; =n—1. Continuing in this way, we see that the decomposition is unique.

6. A second point of view on the Weil-Deligne group

In the automorphic forms literature, the Weil-Deligne group is sometimes con-
sidered to be W(K/K) x SL(2,C). While this is not the same thing as W/(K /K),
let us explain how representations of the two groups can be identified.

We define a representation of W(K/K) x SL(2, C) to be a continuous homo-
morphism 9 : W(K/K) x SL(2,C) — GL(V) (V' a finite-dimensional complex
vector space) such that the restriction of n to SL(2,C) is complex analytic. Note
that 7 is semisimple if and only if its restriction to W(K/K) is semisimple: for
the restriction of 7 to SL(2,C) is in any case semisimple, and a finite-dimensional
complex representation of the direct product of two groups is semisimple if and
only if its restriction to each factor is.

For n > 1 let us write sym(n) for the n-dimensional representation 7 of SL(2, C)

given as follows: The space of 7 is the vector space V of homogeneous polynomials
of degree n — 1 in two variables = and y. Given

a b
g= (c d) € SL(2,C)
and f € V, we define

(T(9)f)(z,y) = f(az + cy, bz + dy).

PROPOSITION. There is a bijection o’ — 1y between wsomorphism classes of
admissible representations o' — (o, N) of WI(K/K) and womorphism classes of
semusumple representations n of W(K/K) x SL(2,C) given as follows: If o' is
indecomposable and hence of the form w ®sp(n) for some irreducible representation
T of WK /K) then we let n=n®sym(n) (external tensor product). In the general
case, where o' is a direct sum o' — oy DB oy with each a_;- indecomposable, we
letn=m & - @, where 1j corresponds to o} as above.




T P AT e 1

i
i
i
1
{
|

sk L

it S il
Ly i St
e St e S L

ELLIPTIC CURVES AND THE WEIL-DELIGNE GROUP 135

PROOF. It suffices to check that the map o’ — 7 is a bijection from inde-
composables to irreducibles. Now if we are given n = m ® sym(n), then we can
recover 7 and n by restricting to W(K/K): = is the only irreducible representation
of W(K/K) occurring in 7, and it occurs with multiplicity n. As for surjectivity,
since the group W(K/K) x SL(2,C) is a direct product, its irreducible representa-
tions are external tensor products of irreducible representations of W(K/K) and
SL(2,C). Thus surjectivity follows from the fact that any irreducible complex an-
alytic representation of SL(2,C) is equivalent to sym(n) for some n.

One point about the correspondence

o' =7 ®@sp(n) — n = Rsym(n)

should be noted: if we write o’ in the form o/ = (o, N), then o is not isomorphic
to n|W(K/K) but rather to the representation

wla)-V/
g~ w(g)("‘l)/zn(y, ( (gz) 7 w(g(;lﬂ)).

NORMALIZATION. In the literature the map ¢’ — 5 is usually normalized in
such a way that = ® sp(n) is sent to (7 ® w(™®~1)/2) Rsym(n), not to = ®sym(n) as
here. The factor w(g)(®~1)/2 then disappears from the preceding displayed formula.

7. Invariant forms

Let o' : W/(K/K) — GL(V) be a representation. By a ¢'-invariant form on
V we mean a nondegenerate bilinear or sesquilinear form (—, —) on V such that

(7.1) (0'(g)v, 0'(g)w) = (v, w)

for g € W/(K/K). 1t is readily verified that (7.1) holds for g € W/(K/K) if and
only if

(7.2) (0(g)v, o(g)w) = (v, w)
for g € W(K/K) and
(7.3) (Nv,w) = — (v, Nw).

We say that o' is unitary, orthogonal, or symplectic if V admits a ¢’-invariant form
which is hermitian, symmetric, or symplectic respectively. Note that in the case
of a unitary representation we do not require the hermitian form to be positive
definite. All that we require is nondegeneracy.

More generally, given a real number ¢, we say that ¢’ is essentially unitary of

‘weight t if o' @ w/? is unitary. Similarly, we say that o’ is essentially orthogonal of

weight ¢ or essentially symplectic of weight t if o’ ® w*/? is orthogonal or symplectic.
Finally, o’ is essentially unitary (essentially orthogonal, essentially symplectic) if it
is essentially unitary (orthogonal, symplectic) of some weight.

We can illustrate these definitions using the representation sp(n). Consider the
nondegenerate hermitian form (—, —) on C" given by

n—1

(z,0) = "L S (< 1V 201,

=0
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where z = (29, 21,...,21-1) and w = (wy, wy,...,wy—1). Let ¢’ = sp(n) = (o, N).
Then (7.2) and (7.3) hold with o replaced by o ® w™("=1/2. Therefore sp(n) ®
w==1/2 is unitary and sp(n) is essentially unitary of weight 1 — n.

One can also consider the nondegenerate bilinear form

n-1

(zw) = D (-1) zjwn 1

Jj=0

on C". This is symmetric if n is 0odd and symplectic if n is even; in both cases it is
invariant under sp(n) ® w=("~1/2, Hence sp(n) is essentially orthogonal of weight
1 —n if n is odd and essentially symplectic of weight 1 — n if n is even.

The following proposition is the analogue for representations of W/(K/K) of a
familiar fact about representations of finite groups.

PROPOSITION. Suppose that o’ is an admissible indecomposable representation
of W(K/K). Then o' is essentially unitary, and tf in addition tr o’ is real-valued
then o' is either essentially orthogonal or essentially symplectic (but not both).
Conversely, if o' is essentially orthogonal or essentially symplectic then tro’ is
real-valued.

PROOF. Write ¢’ = m ® sp(n), where 7 is an irreducible representation of
W(K/K). Then 7 = p®w® with p of Galois type and s € C. Write s = t+ 1§ with
t,0 € R, and let V be the space of p. Since p has finite image, V admits a p-invariant
positive definite hermitian form (—, )y, and by virtue of its sesquilinearity this
form is also invariant under p ® w*®. Consequently, the tensor product of {(—, =)y
with the nondegenerate hermitian form on C® exhibited above is invariant under
7®sp(n)@w(=2#+1-1)/2 Hence 7 ®sp(n) is essentially unitary of weight —2¢t+1—n.

Next suppose that trm ® sp(n) is real-valued. Then so is its restriction to
W(K/K), namely (trm)(1 + w + - -+ + w™1). Therefore trn (= w*t9 tr p) is real-
valued. In particular, if @ is an inverse Frobenius and m is the order of o(®), then
¢'™ = +1. Thus ¢*° is a root of unity, and consequently p ® w* is also of Galois
type. Hence without loss of generality we may assume that § = 0. Therefore
trp is real-valued, so that V admits a p-invariant nondegenerate bilinear form
which is either orthogonal or symplectic. The tensor product of this form with
the orthogonal or symplectic form on C" exhibited above is invariant under 7 ®
sp(n) ® w{~2+1=1)/2 and is either orthogonal or symplectic. Hence 7 ® sp(n) is
essentially orthogonal or essentially symplectic of weight —2t + 1 — n.

Conversely, suppose that 7 ® sp(n) is essentially orthogonal or essentially sym-
plectic of some weight u. Then ¢’ ® w*/? is self-contragredient. Hence if an irre-
ducible representation of W(K/K) occurs in ¢’ ® w*/? so does its contragredient. It
follows that 7* ®@w~*/2 is isomorphic to 7®w/*¥/2 for some j (0 < j < n—1). Writ-
ing 7 = p@w*** and equating | det 7* ® w /2| with | det 7 ® wI+¥/2|, we find that
j = —2t—u, whence p®w'? is self-contragredient. In particular, (det(p®w'?))? =1,
and since the values of detp are roots of unity, we see that ¢*° is also a root of
unity. Hence after replacing p by p® w*® we may assume that 6 = 0. Then p, being
both self-contragedient and of finite image, has real-valued trace. Consequently,
sodor =pRutando=7®(1Owa---@®w'!). Now tro’(g9z) = tro(g) for
g € W(K/K) and z € C, as one sees by taking ¢’ = ®sp(n) in (3.3). Hence tro’
is also real-valued.
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tic. Then there exist u,u’ € R such that o' ® w
symplecti¢. In particular, the square of the determinan

Lemma holds for an admissible indecomposable representation,
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orthogonal and essentially symplec-
/2 is orthogonal and o' ® w72 is
t of both representations is
us o' @ w*? is both orthogonal and symplectic. Since Schur’s
the usual argument
p to scalar multiples, and we get

Finally, suppose that o' is both essentially

1, whence u=u'. Th

shows that an invariant bilinear form is unique u
a contradiction.

TERMINOLOGY. One usually defines a repre
tary if there is a quasicharacter x of W(K/K) suc
if such a quasicharacter exists then one can choose it to be of the form x = w
for some t € R. Therefore the definition of “essentially unitary” given here agrees
with the usual notion.

On the other hand, the requirement that o' @ w
for some t € R is strictly stronger than the requirement th
or symplectic for some quasicharacter x.

sentation o’ to be essentially uni-

h that o’ ® x is unitary. However,
t/2

t be orthogonal or symplectic
at o’ ® x be orthogonal

8. The L-factor
Let o' = (o, N) be a representation of W(K/K) on a vector space V. Put
vi=yvD ={veV:o(gu=uvioralg€ I},
Vn = ker N,

and

Vi =vinw.
and the fact that I is normal in W(K/K) together
bspaces of V. Furthermore, if @ is an inverse
of o(®) to V! or to V4 is independent of
ite o(®)|Vy as ®|V{,. The L-factor of o' is

The compatibility relation (3.2)
imply that V! and Vj are invariant su
Frobenius element, then the restriction
the choice of @. For simplicity let us wr
the meromorphic function

L(o',s) = det(1 — g BVt

Its properties are as follows:

{Ll) ‘E’('ﬂ""f @18 = L(Ufl S)L(Tr! 8).

(L2) L(indg/x o 8) = L(p',8)

Here 7' is another representation of W/(K/K) and p' is a representation of
w'(K /L), with L a finite extension of K. Property (L1) is immediate, and in fact
a stronger property holds if we restrict ourselves to representations with N =0
on such representations L(x,s) is multiplicative in short exact sequences, i.e. the
~— L(o,s) determines a homomorphism from the Grothendieck
ations of W(K /K ) into the group of nonzero meromorphic
is (L1), because unlike Ve
it can be deduced from two

map o = (0,0)
group of virtual represent
functions on C. In general, though, all we can assert
V!, the functor V — Vy is not exact. As for (L2),

elementary lemmas (cf. [3, Prop. 3.8)):

LEMMA 1. Let W be a finite-dimensional vector sp
morphism of W, f a positive integer, and Ty the endomo

by

ace over C, T an endo-
rphism of cf @ W given

Tf(ej®w)=ej+1®w (wGW,OSij—%
Ti(ef-1@w) =€ ® T(w).
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Then

det(1 - 2T¢) = det(1 - z/T).

For the statement of the next lemma it is convenient to employ the language
of “C[G]-modules” rather than of “representations”.

LEMMA 2. Let G be q group, H a subgroup of G of finite index, and I a normal
subgroup of G. Put J = INH. Given a C[H]-module U, we have an isomorphism
of G/I-modules

indC 7\ & i 4G/T 51
(indj U) =1ndH/JU ,
where H/J is identified with the subgroup HI [T of G/I.

Let us recall Deligne’s argument deducing (L2) from Lemmas 1 and 2. Put
G=W(K/K), H = W(K/L),and J = INH = Ir. Write U for the space of the
representation p’ = (p, M) of H and ¢’ = (e, N) for the induced representation on
V = C[q@] ®c(m) U. The explicit formula for N in part (iv) of the proposition of
Section 3 gives identifications

VN = C[G] ®cia) Uy = indy, x Uny,
so that
(8.1) Vi = ind) UY,
by Lemma 2. Hence
(8.2) L(o',5) = det(1 - g~*9| indg/ Uf)
On the other hand, if we put W = U/ i, then
(83) mdg% Uj{,! = C[G/I] ®C[H/J] w.

Denoting the residue class degree f(L/K) simply by f, we can identify the right-
hand side of (8.3) with Cf @ W by making the coset of ¢/ in G/I correspond to
the standard basis vector ej in €/, Hence if & is an inverse Frobenius element, of
L (equal to ¢/ for some i € I) and T'= &, |W, then Lemma 1 gives

det(1 — z@|indy Upy) = det(1 — 2T;) = det(1 — z/T).

Taking z = ¢~* and referring to (8.2), we obtain (L2).

Property (L1) reduces the computation of L-factors of admissible representa-
tions to the case of admissible indecomposable representations. The latter compu-
tation reduces in turn to the case of irreducible representations:

PROPOSITION. Suppose that o' = 1 ® sp(n), where n is an irreducible repre-
sentation of W(K/K) and n is a positive integer, Then

L(d'ys) = L(m,s 4+ n—1).

PROOF. Let W be the space of 7, so that V — W ®&C" is the space of /. Then
Vi =W!®e,_,, and & acts on W! ®é€n—1 via the automorphism (7(®)|W!)®q! =",
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9. L-factors and ¢-adic representations

Let £ be a prime different from p and let oy : Gal(K/K) — GL(Vg) be an
{-adic representation. Given an embedding ¢« : Q; — C (and hence an embedding
¢ : Qe(z) — C(z) satisfying ¢(z) = z) we can define an L-factor L(o;,¢,8) by
putting

L(0%,4,5) = (det(1 = 204(@)|V{) ™) ]pgmr.
On the other hand, we have seen how to associate to o, and ¢ a representation
04, = (04,.,Np,.) of W(K/K), whence an L-factor L(oy ,,s). These two L-factors
are equal:

PROPOSITION. L(y,¢,3) = L(a},, 8).

PROOF. Put V = C®, V;. In the notation of Section 4 we have

Neo=1c® N,

and
00.(9) = 1c ® 0¢(g) = 1¢ ® (04(g) exp(—te(i)Ne))
(9=9™i€e WK/K), m€Z,ieI). Hence Vy = C ® ker N; and

(9.1) o2, {9VN = 1c ® (07(g)| ker Np).
It follows that
(9.2) Vi = C® ((ker No) N V).

But V/ is contained in ker Ny, because oy coincides with the map i — exp(te(i)Ng)
on an open subgroup of I. Therefore (9.2) can be rewritten Vi=C® V{, and then
(9.1) gives

ot (P)|Vi = 1c ® (04(P)|V{).

10. The conductor

We let O and @ denote respectively the ring of integers and a uniformizer of
K, and if R is any extension of K inside K we let ORr denote the ring of integers
of R. If RKy; has finite degree over K, unr then it is also meaningful to speak of a
uniformizer wp of R.

Let o’ = (0, N) be a representation of W' (K/K). We would like to define the
conductor M(o’) of o'. It is to be a nonzero ideal of (@, hence of the form

N(o') = w0
for some nonnegative integer a(o’). This integer is the sum of two terms,
a(o’) = a(0) + b(d"),
and as the notation indicates, the first term depends only on o, not on N. Fur-
thermore, if N = 0 then b(c*) = 0, so that a((o, 0)) = a(o); thus the notation is
consistent with our practice of identifying o with (o, 0).

The term b(co’) is the simpler of the two to define: writing V' for the space of
o’ we have
b(o') = dim VI V.
This quantity has the following properties (notation as in (L1) and (L2)):
(b1) b(o' ® 7') = b(o’) + b(7').
(62) blindz/x ) = F(L/K)b(s).
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For insight into this formalism, observe that since Vi is an invariant subspace of
V1, the characteristic polynomial of @ on V}{ divides its characteristic polynomial on
V1. Thus if we think of the L-factor as the reciprocal of a characteristic polynomial,
‘then we see that L(o',s)/L(0, s) is a polynomial in ¢~*, and in fact that

. L{o’',s)
AN 8 ’
b(c') = degree in ¢~° of Lo

Hence (b1) and (b2) follow from (L1) and (L2) (of course one must also note that
gy = (g~°)f(L/KD),

The definition of a(o) is slightly more involved. Choose a finite Galois extension
R of Kyn: such that o is trivial on the subgroup Gal(K/R) of I, and put G =

Gal(R/Kn:). Let vg be the valuation on R and G = Go DG1 DGy D ... the
higher ramification groups, defined by

Gj ={g € G:vr(g9(wr) —wr) > j+1}.
Then

(10.1) a(e) = ITGG]Tl dim(V/VG9),
=0

where V' is the space of o and VGi the subspace of vectors fixed by G;. It is easily
verified that all but finitely many terms in the sum are 0, that the definition is
independent of the choice of R, and that a(o) is a nonnegative rational number
which is positive if and only if o is ramified. Furthermore, it is known that a(o)
is a nonnegative integer (cf. [10, p. 99, Thm. 1’; p. 100, Cor. 1’]) and that the
following properties hold:
(al) a(*) is additive in short exact sequences, i.e. the map o — a(c) determines
a homomorphism from the Grothendieck group of virtual representations
of W(K/K) into Z.
(a2) Let L be a finite extension of K in K and p a representation of W(K/L).
Write the relative discriminant of L/K as w?Z/X)®, Then

a(indyx p) = dim(p)d(L/K) + f(L/K)a(p).

(a3) Let x be a quasicharacter of L* , identified with a one-dimensional repre-
sentation of W(K /L) by local class field theory. If x is unramified, then
a(x) = 0; otherwise a(x) is the smallest positive integer m such that y is
trivial on 1 + w7t OL.

Property (al) is straightforward; for proofs of the other two assertions see [10,
pp. 101-102, Prop. 5 and Cor. to Prop. 4). 'What is important here is that if we
grant the existence of a function a() satisfying (al), (a2), and (a3), then these
properties actually serve to define a(c) for every representation o of W(K/K),
and we can dispense with the explicit formula (10.1): indeed if we write [o] as in
Corollary 2 of Section 2, then

(10.2) a(0) = Y cryxf(L/K) alx) - a(x")),
(L,x,x")

and the right-hand side is uniquely determined by property (a3). The remark will
become important in Section 11.
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Let us return now to ¢’ = (o, N) and to a(o') = a(o) + b(o’). Recall that
o' is said to be unramified if ¢ is unramified and N = 0. These conditions being
equivalent to the vanishing of a(o) and of b(o'), it follows that ¢’ is unramified if
and only if a(¢’) = 0. Furthermore, from the properties of b(¢’) and a(o) listed
above we obtain:

(a'1) a(oc’ & 7') =a(c’) + a(r').

(a'2) a(indp/k p') = dim(p')d(L/K) + f(L/K)a(p').

(a'3) If dime¢’ = 1, so that o' = (0,0), then a(o’) = a(0) is given by (a3).

Property (a’1) reduces the calculation of a(¢’) for an arbitrary admissible rep-
resentation to the case of an admissible indecomposable representation. As with
the L-factor, we can further reduce to the case of an irreducible representation of
W(K/K):

PROPOSITION. Suppose that ¢’ = m ® sp(n), where w is an irreducible repre-
sentation of W(K /K) and n is a positive integer. Then

(o) { na(w) if w is ramified,
a(d’) =
n—1 i 7 is unramified.

PROOF. Let W be the space of 7, so that V = W ® C" is the space of o’.
Then VI = WI ® C* and V,6 = W! ®e,_1. Since 7 is irreducible we have either
WT = {0} (if 7 is ramified) or W/ = W (if = is unramified). In the latter case W is
one-dimensional, because W(K /K)/I is abelian. It follows that b(¢') is 0 or n — 1
according as w is ramified or unramified. On the other hand, o is the direct sum of
the representations 7 ® w? for 0 < j < n — 1, and it is immediate from (10.1) that
a(r ® w?) = a(r). Therefore a(c) = na(rw),

Finally, let us mention an alternative formulation of (a’1) and (a’2) in the case
where K has characteristic 0. In this case K contains Q,, and we can speak of the
absolute discriminant of K, an ideal of Z, with a unique positive rational integral
generator D. Puttihg

A(O”) — Ddim a'qa(a") . N(Ddim a'm(al)),

where D is the different ideal of K, we have

(A1) A(c'®1') = A(0")A(T').

(A2) A(indp/k p') = A(p').

For (A2) one uses the standard formula Dy, = DIL:K1gd(L/K) where Dy, denotes
the discriminant of L.

11. The epsilon factor

By an additive character of K we mean a nontrivial unitary character of the
additive group of K, i.e. a continuous homomorphism 3 : K — C* which is
nontrivial and of absolute value 1. The first point to make about the epsilon factor
of a representation o’ = (¢, N) of W/ (K /K) is that it depends on more than just o':
it also depends on the choice of an additive character ¢ of K and of a Haar measure
dz on K. Hence we denote the epsilon factor e(o’, 1, dz). If K has characteristic 0
then there is a nearly canonical choice of 9 and dz given by

(11.1) Vean(x) = 27Nt /0 (@)
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and
(112) / dTcan = D—1/2a
@]

where A : Qp = Qp/Zy, — Q/Z — R/Z is the composition of natural maps. But
the choice 9., is also canonical, and we shall avoid premature specialization.

The second point about the epsilon factor is that it is really the product of two
factors:

(o', ¥,dz) = €(0,v,dx)é(c").

As the notation suggests, the second factor is independent of ¥ and dz, while the
first is independent of N. The factors are defined in such a way that if N = 0 then
§(c’) = 1; equivalently, ¢((o,0), v, dz) = €(o, 9, dz), as one would hope.

The delta factor is the simpler factor to define. If V is the space of ¢’ then the
action of an inverse Frobenius element & on the quotient space VI /V{ is indepen-
dent of the choice of ¢, and we put

6(c’') = det(-B|V/VR).

This satisfies a familiar formalism:

(61) 6(c' ® ') = 6(a")o(").

(62) 8(indy/x #') = 8(4').

The similarity between these properties and those of the L-factor is not coin-
cidental, for we have

det(—®|V! . geimV [(g6) o L(0'y 8
5(0')=_(__l_r).= T — ( )_ - oo Lo 8).
det(—P|Vy) s—-c0g#dimVy[(gf, 5)~1 s—-o0 L(o, )

Hence (61) and (62) follow from (L1), (L2), (b1), and (b2).
We come next to the definition of €¢(¢). In contrast to a(c), for which we
have the explicit formula (10.1), (o, %, dz) has no known definition other than by
the analogues of properties (al), (a2), and (a3). More precisely, Langlands and
Deligne [3] have proved the existence of a function e(*, x, *) satisfying the following
conditions:
(el) €(*,v,dz) is multiplicative in short exact sequences, i.e. the map o —
¢(0,1,dz) determines a homomorphism from the Grothendieck group of
virtual representations of W(K/K) to C*.

(€2) Let L be a finite extension of K in K and p a virtual representation of
W(K/L). Then for any choice of Haar measure dzy, on L,

e(indL/K P 1/% d.’l:) . f(Pa 1/) ° t"I‘l,/l(a dCL'L) 0(L/K, 1/)5 dl‘a dIL)dimpa

where

e(indy/x 11,7, dx)
e(lp, 9 otryk,dzr)

o(L/Ka ¢a d.’l?, de) =

(e3) Let x be a quasicharacter of L*, identified with a representation of di-
mension 1 of W(K /L) by local class field theory. Let ¢ be an additive
character of L, and write n(¢) for the largest integer n such that v is




i S e i
o e el

ELLIPTIC CURVES AND THE WEIL-DELIGNE GROUP 143

- trivial on w;"Oy. Let ¢ € L™ be any element of valuation n(1z) + a(x).
Then
Jm10x x (@)L (z)dzy  if x is ramified,
G(Xa "prde) = _lL ) . PP
’ xw™He) fp, dz1 if x is unramified.
The formulas in (e3) are those imposed by Tate’s local functional equation for
L-functions of quasicharacters [14]. Now if [¢] is written as in Corollary 2 of Section
2 then (el) and (€2) give

( €(x,¥otry k,dzr) )cL"‘""

(11.3)  e(oy9,dz) = e(1k, %, dz)™7  J] e(X's9 o trp/x, dzL)

(Lx:x')

and the right-hand side is uniquely determined by (e3).

With this definition of €(o,%,dz) in hand, let us return to e(o’,4,dr) =
(o, 9, dz)8(0"). Its properties follow from those of its factors:

(€'1) (o’ @ 7',9,dz) = €(0’, ¥, dz)e(r', ¥, dz).

(612) 6(indL/K pla ¢) d.’L‘) = 6(/),, 11) . t;rL/Ka dIL'L) 0(L/Ka 1/)» d:l), de)dimp’ where

the factor 8(L/K,,dz,dzy) is as in (€2).

(¢'3) If dimo’ = 1, so that ¢’ = (0,0), then e(o’,9,dz) = €(0,%,dx) is as in

(e3).

As with (L1) and (a'l), property (¢'l) reduces the calculation of (o', ,dz)
for admissible o’ to the case of admissible indecomposable ¢’. A further reduction
to the case of irreducible o will be given in Section 12. But for this and other
applications we must first record the dependence of ¢(co,,dz) on the choice of 9
and dz, and the effect on €(o, ¥, dz) of twisting o by w?®.

Given oo € K, write 9, for the additive character z — 1¢(az). Any additive
character of K is equal to 1), for some a, and any Haar measure on K has the
form rdz for some positive real number r. Recall that det o and w can be viewed
as characters of K*.

PROPOSITION.

(i) €(o,%a,dz) = det o(a)w(a)™ 4™ %¢(0, 9, dz).
(ii) e(o,9,rdz) = rdimo¢(o, 4, dz).

(ili) e(0 ® w?,9,dz) = ¢(0, 9, dz)g*(n(¥) dim(o)te(@)),

Proor. When dimo = 1, ali three statements are readily deduced from the
explicit formulas in (e3). Property (ii) then follows in general from (11.3). For (iii)
one uses (10.2) as well as (11.3). For (i) one also needs the fact that if [o] is written
as in Corollary 2 of Section 2, then

CL-XJ(’
(11.4) deto =[] (%,K") .

(Lxx")
This follows from the general identity
(11.5) det(ind$ x) = (sign$)(x o trans§)),

where G is any group, H a subgroup of finite index, x a one-dimensional character of
H, signg the determinant of the permutation representation of G on the left cosets
of H, and trans$} the transfer from G2® to H®P (see [3, Prop. 1.2}, or [6]). Of course
if G is a topological group and y is continuous, then (11.5) is still valid if we interpret
G2 and H?P to be the group modulo the closure of its commutator subgroup. Hence
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to deduce (11.4) from (11.5) one need only recall that in the class-field-theoretic
identification of multiplicative groups of local fields with abelianized Weil groups,
the transfer from W(K/K)*® to W(K /L) corresponds to the inclusion of K* in
Lx.

REMARK. It follows from (ii) that on virtual representations of dimension 0,
€(*, ¥,dz) is independent of dz, which can therefore be omitted from the notation.

Thus if p is a virtual representation of W(K /L) of dimension 0, then (€2) takes the
form

e(indy/x p,9) = e(p, ¥ o try /i)

This property is described in the literature by saying that the epsilon factor is
“inductive in degree 0”.

12. The root number

The root number associated to a representation o’ of W/(K/K) and an additive
character 9 of K is

, e(o’ ¥, dx)
W(do',¢) le(o, 9. dz)]”

where dz is any Haar measure on K. As the notation suggests, the value of W (o', )
is independent of the choice of dz (Section 11, Prop. (ii)). If ¢’ is an essentially
symplectic representation then W (o”, 1) is even independent of 4 (Section 11, Prop.
(1)), for the determinant of a symplectic representation is trivial, and therefore the
determinant of an essentially symplectic representation is w* for some u € R. Thus
if o' is essentially symplectic we shall denote the root number simply by W(o’).

We begin with a lemma which is valid for any o’. Let S(K) be the Schwartz
space of K, i.e. the space of locally constant complex-valued functions on K with
compact support. If ¢ is an additive character of K then the self-dual measure
relative to 9 is the unique Haar measure dzy on K such that the Fourier transform

f) = /K f(@)(zy)day

is an isometry of the L®-norm on S(K).

LEMMA.

() e(o,9,dzy)e(o*,9,dTy) = det o(—1)g™¥) dim(e)+a(o)

(ii) 8(c")b(0") = g,

(iii) (o', 9, dzy)e(0", ¥, dry) = det o(—1)gn¥) dim(e")+a(o")
PROOF.

(i) If o is a quasicharacter x, then (i) follows from (e3) by an elementary
calculation, familiar from the theory of Gauss sums. Alternatively, we
can appeal directly to Tate’s local functional equation [14], which is after
all the source of (€3):

¢ —11-8( )4
ff(:i)();-—lujl _(:)) ’= e(xw®, ¥,dzy,

)ff(x)xw"(w)dxx
L(x,s)
Here f € S(K) is arbitrary, d*z is any Haar measure on K X, and the

equation is to be understood by analytic continuation in s (i.e. each side
makes sense on some nonempty open subset of C and the two sides are
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equal as meromorphic functions on C). Choosing f so that the integrals
do not vanish identically, we deduce that

G(Xwaa ¥, dz‘lll)f(x_lwl—sa 1, d.’l),l,) = X(—l)a

because f(z) = f(—z). Hence the formula follows from part (iii) of the
proposition of Section 11.

In general, we write €(o,9,dzy) as in (11.3). Then e(o*,v,dzy) is
expressed by the same formula, but with each quasicharacter replaced
by its inverse. Hence we obtain (i) from (10.2), (11.4), and the one-

dimensional case.
Write o’ = (o, N) and 0™ = (0, N*), and let V and V* be the respective

spaces. Since the subspace N(V) of V' is invariant under W(K/K), its
dual space N(V)* is a representation space for W(K _/' K) via the contra-
gredient action. In what follows we shall mingle “W(K /K)-modules” and
“representations of W(K/K)" freely, writing for example N “(V*)ew ! to
indicate the tensor product of the representation of W(K /K) on N*(V*)
with w=1. The map N*(V*)®w~! — N(V)* given by N*f fIN(V) is
a well-defined isomorphism intertwining the action of W(K/K), so that
N*(V*)@uw™ ' = N(V)"

Taking I-invariants on both sides of (12.1), we find

N* (v ew 2NV
Now N and N* determine W(K/K)-isomorphisms

(VIIVE) @w= N(VT)

and

V‘I/V&I. o~ N*(V-I) ®UJ—1
respectively, and substitution in (12.2) gives

v vl e vV ew™
In particular, (12.3) implies that

det (—a*(§)|V*!/VRL) = det (—ga (@ HIVI VR,

proving (ii).

(iii) This follows from (i) and (it).
Recall that if K has characteristic 0 we put A(o") = piima’ ¢a(e") and define
Pcan and dZcan by (11.1) and (11.2).

PROPOSITION. Suppose that for some t € R the representation o' is essentially
unitary, essentially orthogonal, or essentially symplectic of weight t. Let 1 be an
additive character of K.

(@) |e(o’, %, dzy)] = g F () dim(e)+ale)),
(ii) If K has characteristic 0 and v is either Yean OT ean, then

(o', 9, dTcan) = W(o', ) A(a") /2,

(iii) If o' is essentially orthogonal then W (o', ¢)* = 1.

(iv) If o' is essentially symplectic then W(o') = £1.
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PRrOOF. First suppose that o’ is either essentially orthogonal or essentially
symplectic of weight ¢. Then the space of o' ®w'/? admits a nondegenerate invariant
bilinear form, so that ¢’ ® w'/? is isomorphic to its contragredient. Thus ¢’ is
isomorphic to o’ ® w'. Applying part (iii) of the lemma as well as part (iii) of the
proposition of Section 11, we see that

N 6(0", 1/), d.'L',p)z = det a.(_l)q(t+l)(n(1p) dim(tr')+a(o')).

Parts (i), (iii), and (iv) of the proposition follow immediately from this equation.
So does (ii), for if ¥ is either 1can oOF Yean» then dzy = dzcsn and ¢"¥) = D.

. Next suppose that o' is essentially unitary of weight ¢, so that the space of
o' ®wt/? admits a nondegenerate invariant hermitian form. Then ¢* is isomophic to
o’ ®wt, where o’ is defined up to isomorphism by viewing o' as a map W(K/K) —
GL(d, C) for some d and composing with complex conjugation. Hence this time the
lemma gives

f(U’, w’ dz1p)€(?’ ¢, d:l:,/,) = det o,(_l)q(t-l-l)(n(‘dJ) dim(a')+a(gl)),

or equivalently (Section 11, Prop. (i)),

(12.4) (o', 9, dzy (0, -1, dzy) = gtV (@) dim(o") +a(o")
We claim that

(12.5) €@, $-1,dzy) = (o', 9, dzy),

or more precisely, that

(12.6) §(c") = 8(a")

and

(12.7) €@, %-1,dzy) = €(0, ¥, dzy).

Indeed (12.6) is immediate, while (12.7) follows from (e3) for dimo = 1 and from
(11.4) in general. Therefore (12.5) holds, and substitution in (12.4) gives (i) and
(ii).

REMARK. Deligne has proved a formula relating root numbers of orthogonal
representations of W(K /K) to Stiefel-Whitney classes ([5, Prop. 5.2]).

We can now make good on our promise to express epsilon factors of admissible
indecomposable representations in terms of epsilon factors of irreducible represen-
tations.

COROLLARY. Suppose that ¢’ = 7 ® sp(n), where 7 is an irreducible represen-
tation of W(K/K) and n is a positive integer. Writem = p@uw'™ with p of Galois
type and t,0 € R. If = is unramified and hence one-dimensional, put X = pw'?.

(i) le(o’, %, dzy)| = q(—t+1—n12}(n(mdim(a')+a(a‘))_

(i) If K has characteristic 0 and ¢ is either Ycan oT Vean then
(o', %, dTcan) = W (o', $)A(0") 7177/,

(iii)

W(m, )" if ™ is ramified,

W(o' ) =
{7tst) {(-1)""1)((45)"("(“’)“)_1 if m is unramified.
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PROOF. Since o' is essentially unitary of weight —2t + 1 —n (Section 7), both
(i) and (ii) follow from the proposition. To prove (iii), let W be the space of 7, so
that V = W ® C™ is the space of ¢’. Then VI = W/ @ C" and Vi =Wlge, .

Suppose first that = is ramified. Then wT = {0}, so V! = {0}. Hence 6(0’) =
1. On the other hand, o is the direct sum of the representations = Quifor0<j<
n— 1, so that e(o, ¥, dr) has the form e(7, 4, dz)"q* with * € Z (Section 11, Prop.
(iii)). Hence €(o’,, dx) has the same form, and W(o',¢) = W(m,¢)".

Next suppose that 7 is unramified. Then W = W/ is one-dimensional, and
VI/V} is isomorphic to the direct sum of the lines W®e; (0<j<n—2), with
—& acting by the scalar —x(®)g~t~3. Therefore, computing in C* /R, we have

(12.8) 6(c') = (—x(®))""' (mod RY).

On the other hand, o is the direct sum of the unramified characters yw'*7 for
0 < j € n—1,so that (e3) gives

(12.9) e(o, ¥, dz) = x(®)"¥™  (mod R}).
Combining (12.8) and (12.9), we obtain the stated formula.

Part II: Elliptic Curves

13. The representation associated to an elliptic curve

Now let E be an elliptic curve over K and £ a prime different from p. The
¢-adic Tate module of E is a free Zg-module of rank 2 with a natural action of
Gal(K/K). Quite generally, if A is any abelian group, then by the f-adic Tate
module of A we mean the inverse limit of the system of multiplication-by-£ maps
Agns1 — Ap (n > 1), where A, denotes the kernel of multiplication by m on A.
We use the standard notations Te(A) = ]ElAgn, Ve(A) = Q¢ ®z, Te(A) as well as
the standard abbreviations Ty(E) = Te(E(K)), Ve(E) = Ve(E(K)). However, we
shall write o’ , for the contragredient of the natural representation of Gal(K/K)
on Vi(E). Thus for us oy , is a map

a}y«/K't : Gal(K/K) — GL(V¢(E)"),

where V¢(E)* is the dual of Vy(E).

The reason that we take the contragredient of the natural action rather than
the natural action itself is that for an arbitrary smooth projective variety X over K
there is no Tate module, but only the Galois representations afforded by the ¢-adic
cohomology groups of X. In the case of an elliptic curve, H}(E) is actually dual
to V¢(E), and so it is the dual of Vi(E) which is properly viewed as a part of the
general picture. Since we have also replaced a Frobenius element by its inverse, the
L-factors which we end up with will be the traditional ones.

Now let ¢ : @¢ — C be a field embedding. As we have seen in Section 4, we
can associate to ‘T:E:/K,z a complex representation “;?;’K,t,b = (0E/K b Ng/k.e,.) of
W/(K/K). We would like to write simply crfgm = (aE;K,NE/K), and so we must
verify that the isomorphism class of 0% Kb is independent of the choice of £ and
v. The verification breaks naturally into two cases: the case of potential good and
the case of potential multiplicative reduction.
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14. The case of potential good reduction

First suppose that E has potential good reduction. Let L C K be a finite
extension of K over which E acquires good reduction, and let Iy be the inertia
subgroup of Gal(K/L). The criterion of Néron-Ogg-Shafarevich implies that o /K
is trivial on Iy. Since Iy, is open in I, it follows that Ng/k,e = 0. Hence it is
merely the isomorphism class of o5k, which must be proved independent of
£ and ¢. But the isomorphism class of a finite-dimensional semisimple complex
representation of a group is determined by its character ([8, p. I-11], [1, Ch. 8,
Chapter 12, no. 1, Prop. 3]), and according to the theory of Serre-Tate, trog /k.6(9)
is a rational number independent of ¢ for every ¢ € W(K/K) ([11, p. 499, Cor.
to Thm. 3]). Hence it suffices to see that o /K¢, is semisimple. In fact it suffices
to see that og/[ ¢, is semisimple, for as we have already recalled in Section 5, a
finite-dimensional complex representation of a group is semisimple if and only if
its restriction to some subgroup of finite index is semisimple. Thus without loss of
generality we may assume that E has good reduction over K itself. By the remark
in Section 5 just referred to, it suffices to show that for some inverse Frobenius
element &, the linear transformation oz, ¢, (®) is semisimple.

Let E be the reduction of E over K. The algebra Q ® End(E) is an imaginary
quadratic field or a quaternion division algebra over Q and therefore contains no
nonzero nilpotent elements. It follows that if B € Q ® End(E), then the image of
B under the natural embedding

ne : Q® End(E) — End(Vy(E)) = End(Vy(E))

is semisimple: for if 7,(B) were not semisimple, then B — %tr 7¢(B) - 1 would be
a nonzero nilpotent element of Q¢ ® End(E), and in fact of Q ® End(E) because
trme(B) € Q ([12, p. 134, Prop. 2.3]). In particular let us take B = F, the
Frobenius endomorphism of E. The image of F' under the contragredient of the
natural representation

(Q® End(E))* — GL(V¢(E)) = GL(Vi(E))

coincides with o/ ¢($71), and therefore og/k ¢(P) is semisimple. Consequently
S0 is 0p/K ¢,., and dropping the subscripts £ and ¢, as we are now entitled to do,
we may summarize our conclusion as follows:

PROPOSITION. Suppose that E has potential good reduction. Then Ng/k =0
and og g is semisimple. Furthermore, E has good reduction if and only if TE/K
15 unramified.

Of course the final assertion is just the criterion of Néron-Ogg-Shafarevich.

15. The case of potential multiplicative reduction

Next suppose that E has potential multiplicative reduction. Then E acquires
split multiplicative reduction over some finite extension of K, which can be chosen
to be quadratic and separable. Equivalently, there exists a character x of Gal(K /K)
with x2 = 1 such that the twist of E by x has split multiplicative reduction over K
itself. Let EX denote the twist of E by x, so that we have a Gal(K /K )-equivariant
group isomorphism

(15.1) E(K)®x & EX(K).
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As an elliptic curve over K with split multiplicative reduction, EX is isomorphic
to a Tate curve over K. Hence for some ¢ € K™ of positive valuation there is a
Gal(K /K)-equivariant isomorphism

(15.2) EX(BE)2 K /4%,

where ¢Z ‘denotes the infinite cyclic subgroup of K X generated by ¢g. Together,
(15.1) and (15.2) yield a Gal(K /K)-equivariant isomorphism

ER) =K/ ox,
and therefore an isomorphism of £-adic representations
(15.3) Vi(E) 2 Vo(K™ [q%) ® x.
Now as a basis for V,(K . /q%) over Q; we can choose the vectors

60=(Clac27""<n,"') and el=(q1)q2)""QH1'--)a

where (, is a primitive £*-th root of unity, Cﬁ+1 = (n, qﬁ" = ¢, and qﬁH = Qn-
Using this basis and (15.3), let us identify the natural action of Gal(K/K) on V¢(E)
with a representation Gal(K/K) — GL(2,Q¢). By our conventions U;s/K,e is the
transpose-inverse of this representation, so that

op/ke(9) = (w(‘?_l (1)) ®x(9) = (w_lf i x?y))

for ¢ € Gal(K/K). In particular, O'IE/K‘e(I) is infinite because ¢ has positive
valuation.
Now write

oE/K,(9) = 05 K ¢(9) exp(—te(})NE/x ¢)

(15.4) _ i )
(g=P™ie WK/K),meZiel)

as in Section 4. Since O';E/K'e(f) is infinite, Ng/k ¢ # 0. Furthermore, using (15.4)
we find

op/ke(P) == (q (1)) ,

*

so that op/k ¢(P) has distinct eigenvalues and is therefore semisimple. Hence
OE/K,., is semisimple as a representation, i.e. g JK b is admissible. Since o Kb
is two-dimensional and Ng k¢, # 0 we see that o nar is indecomposable as
well. The- classification of admissible indecomposable representations (Section 5)
now shows that UQE/K'“ is isomorphic to £ ®sp(2) for some character £ of W(K/K).
Comparing the traces of these two representations, we find that x(g)(w™1(g)+1) =
£(9)(1 + w(g)) for g € W(K/K). Hence £ = xw™!, where x is now viewed as a
character of W(K/K) rather than of Gal(K/K).

We conclude that o' /K ¢, 18 isomorphic to xw~! ®sp(2), which is independent
of £ and ¢. Dropping these subscripts, we may summarize the conclusion as follows:
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PROPOSITION. Suppose that E has potential multiplicative reduction, and let
x be a character of W(K/K) such that x> = 1 and EX has split multiplicative
reduction. Then a"E/K = yw™! ®sp(2). In particular, Ng/k # 0, so that U’E,lh’ 18
ramified. Furthermore, x 18 trivial, unramified but nontriviel, or ramified accord-
ing as E/K has split multiplicative reduction, nonsplit multiplicative reduction, or

additive reduction.
The final statement follows from the reduction theory of elliptic curves (cf. [12,

p. 181, Prop. 5.4 (a)])-

16. The Weil pairing

Let p denote the group of all roots of unity in K. We have an identification of
Gal(K/K)-modules
Tl(ﬂ') = Zl ® we,

where we is the £-adic cyclotomic character of Gal(K/K) (the unique ¢-adic char-
acter of Gal(K/K) which coincides with w on W(K/K)). Hence the Weil pairing
on Eg (n > 1) determines a nondegenerate, symplectic, Gal(K/K)-equivariant
pairing

(16.1) (=, =) : Te(E) x Te(E) — Zg @ we.
After extending scalars to Q¢ and taking duals, we get
(= =) : Ve(B)* x Va(E)* — Qe®wp ',
and the Gal(K/K)-equivariance means that
(05/k,0(9)V, 0k (9W) = we(g) ™! (v, w)
for g € Gal(K/K). This implies first that
(16.2) (NE/K,ev, w) = ~ (v, Ng/K w)
and second that
(16.3) (0p/K.e(9)v, 08K (9)W) = w(g) (v, w)

for ¢ € W(K/K). If we extend scalars to C via an embedding ¢ : Q¢ — C, then
(16.2) and (16.3) imply that

(UIE/K,e,L(g)v,O"E/K,z,b(g)w) = w(g)™ (v, w)
for g € W'(K/K), and we conclude that o ®w!/? is symplectic. In other words:

PROPOSITION. The representation JFE/K is essentially symplectic of weight 1.
Since a symplectic representation has trivial determinant, this statement con-
tains the fact that
detog g = w™ L
Conversely, any two-dimensional representation with determinant w™* (t € R) is
essentially symplectic of weight ¢, because in dimension two the symplectic group

is just SL(2,C).
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17. The L-factor

We define the L-factor of E over K to be the L-factor of the associated repre-
sentation:

L(E/K,s) = L(0g g, 3).
Let us check that this definition gives the familiar result.
PROPOSITION.

(i) Suppose that E has good reduction. Let E denote the reduced curve over
k, and put a =1 — |E(k)| + q. Then

L(E/K,s) =(1—aq™® +¢'72)" L,
(ii) If E has multiplicative reduction, then
L(E/K,s) = (1- ag™)~",

where @ is 1 or —1 according as E has split or nonsplit multiplicative
reduction.
(iii) If E has additive reduction, then L(E/K,s) = 1.
PRrooF.
(i) From Section 9 we know that L(og g+ 8) = P(g™*)~! with

P(z) = det(1 — zag/K'e(di)IVg(E)").

In the case at hand I acts trivially on V,(E)*, and P(z) is a priori of the
form

(17.1) P(z) = det(1 — z8|Vy(E)*) = 1 — xz + qz°

because det U}E/K‘l(é) = w;'($) = ¢. Let F denote the Frobenius endo-

morphism of E. In the identification Vy(E) = Ve(E), the natural action
of F on the left-hand side coincides with the natural action of =1 on the
right. Hence

P(z) = det(1 — zF|V,(E)),
so that

P(1) = det(1 — F|Vy(E)) = deg(1 ~ F) = |E(k)|

(cf. [12, p. 134, Prop. 2.3)). In view of (17.1) this pins down P(z) com-
pletely.

(ii) Suppose more generally that E has potential multiplicative reduction, and
let x be a character of W(K/K) such that x2 = 1 and EX has split
multiplicative reduction. Then e /K = xw™! ® sp(2). Hence

L(og/k,s) = L(xw™, s+ 1) = L(x, s)

(Section 8, Prop.). Now if E has multiplicative reduction over K, then y
is unramified, so that

L(x,8) = (1= x(®)g°) ' =(1-g™*)"

with a as stated. On the other hand, if E has additive reduction then X
is ramified, so that L(x,s) =1 in agreement with (iii).




152 DAVID E. ROHRLICH

(iii) Since we have just handled the case where E has potential multiplicative
reduction, we may assume that E has bad but potentially good reduction.
Thus J:WK = (0g/k,0), with og/k ramified; if V is the space of ok,
then V! # V. Hence V! has dimension 0 or 1. Suppose that V! has
dimension 1, and choose a basis {ep,e1} for V such that ep spans vi.
Let us use this basis to view op;x as a map W(K/K) — GL(2,C).
Since det og/x = w1 is trivial on I, we find that og/x(I) is a finite but
nontrivial subgroup of the group

{((1) ’;):*ec}.

But this group has no finite nontrivial subgroups. Hence VT has dimension
0, and consequently L(O’b/K, s)=1.

18. The conductor
Put a(E/K) = a(”ig/x)- The conductor of E over K is the ideal

NE/K) = Nog k) = w*FF0.
If K has characteristic 0 then one can also put
A(E/K) = A(ogx) = D*N(WE/K)).

PROPOSITION.
(i) E has good reduction over K if and only if a(E/K) =0.
(ii) Suppose that E has potential multiplicative reduction. If E has multiplica-
tive reduction over K itself, then

a(E/K)=1.

If E has additive reduction, let £ be a quadratic character of WK/K)
such that E¢ has multiplicative reduction. Then

a(E/K) = 2a(§)-

(iii) Suppose that p > 5 and that E has bad but potentially good reduction.

Then
a(E/K) = 2.
PRrOOF. .

(i) A representation ¢’ of W/(K/K) is unramified if and only if a(c’) = 0,
and o /K is unramified if and only if E has good reduction.

(ii) Choose a character x of W(K/K) such that x? = 1 and EX has split
multiplicative reduction. Then U,E/K & xw™! ®sp(2). Hence a(a’E/K) is
2a(x) or 1 according as x is ramified or unramified (Section 10, Prop.), i.e.
according as E has additive or multiplicative reduction. If E has additive
reduction then a(x) = a(£), because both EX and E¢ have multiplicative
reduction and therefore x/¢ is unramified.
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(iii) Let R be the minimal extension of Ky, inside K over which E acquires
good reduction (cf. [11, p. 498, Cor. 3]). Then Gal(K/R) is the kernel of
og/K, and we may view og/k as a faithful representation of

W(R/K) = W(E/K)] Gal(K/R).

Denoting the image of & in W(R/K) simply by @, we can write W(R/K)
as a semidirect product

W(R/K) b Gal(R/Kunr) A (Q)v

and since p > 5 we know that Gal(R/Kn,) is cyclic of order 2, 3, 4, or
6 (cf. [9, p. 312]). We now consider two cases, according as the above
semidirect product is or is not direct.

If the product is actually direct, then W(R/K) is abelian. Since
0g/k is semisimple, we can write it as a direct sum of quasicharacters of
W(K/K) trivial on Gal(K/R): og/xk = x ® x. In fact x' = w™lx L,
because det o/ x = w™'. Thus a(og/k) = a(x) +a(x’) = 2a(x). But the
restriction of x to I has order 2, 3, 4, or 6, while p > 5. Thus x is tamely
ramified, i.e. a(x) = L.

Next suppose that W(R/K) is nonabelian. Since Gal(R/Kyn:) is
cyclic of order 3, 4, or 6, its automorphism group has order 2, so that
@2 centralizes Gal(R/Kyn;). Let L denote the quadratic extension of K
inside Kyn. It follows that the group

W(R/L) = Gal(R/Kunr) X (452)

is an abelian normal subgroup of W(R/K) and consequently that og,k is
induced from a one-dimensional character of W(R/L): og/x = indr Kk X-
Let us view x as a character of W(K /L) trivial on Gal(K/R). Since the
restriction of x to I has order 3, 4, or 6, x is tamely ramified. Hence
formula (a2) in Section 10 gives a(og/k) = a(indL/k X) = 2a(x) = 2.

19. The root number
The root number of E over K is
W(E/K) =W(og/k)-
Since o /K is essentially symplectic, the right-hand side does not depend on the
choice of an additive character of K, and W(E/K) = 1.

PROPOSITION.
(i) If E has good reduction over K, then W(E/K) = 1.
(i) Suppose that E has potential multiplicative reduction. If E has multiplica-
tive reduction over K itself, then
—1 if E has split multiplicative reduction,

W(E/K) = {

1 if E has nonsplit multiplicative reduction.

If E has additive reduction, let £ be a quadratic character of W(K/K)
such that E¢ has multiplicative reduction. Then

W(E/K) = ¢(-1),
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where £ is viewed as a character of K* by local class field theory.

(iii) Suppose that E has potential good reduction and that K = Qp, withp > 5.
Let A € Q be the discriminant of any generalized Weierstrass equation
for E over Q,, and put

12

=m=1,2,3,4, or 6.
Then
(1, ife=1
(:l) ife=2o0r6
p
W(E =
(B/Qp) = 4 (_3) Frm
p
— 1, ife=4
((5)
Proor.

(i) Here Ng/x = 0 and og/k factors through the abelian group W(K/K)/I.
Since og/k is semisimple, it is the direct sum of two quasicharacters:

op/k Ex®X.

We have in fact x' = w™1x ™!, because detog/x = w™'. Hence if ¢ is an
additive character of K then

W(og/x) = W)W, ¥) = W, )W (x™ 1, ¢) = x(-1)

(Section 11, Prop. (iii); Section 12, Lemma (i)), and since x is unramified,
x(-1) =1

(ii) Let x be a character of W(K/K) such that x2 = 1 and EX has split
multiplicative reduction. Then o', kS xw™! ®sp(2). Hence we have

W(xw™t,9)? if x is ramified,

W (o} =
(@/x) { ~x(P) if x is unramified

(Section 12, Cor.), where % is an arbitrary additive character of K. If E
has multiplicative reduction, then x is unramified and is trivial or non-
trivial according as E/K has split or nonsplit reduction. On the other
hand, if E has additive reduction, then yx is ramified and we get

W(og/x) =Ww ', 9)" = W(x¢)* = x(-1)

(Section 11, Prop. (iii); Section 12, Lemma (i)). Since both EX and E¢
have multiplicative reduction, x/¢ is unramified, whence x(—1) = §(-1).
(iii) [7, Prop. 2}.

20. The Archimedean case

We would still like to fit in a brief word about the global setting, or at least
about the “number field case”. To do so, however, we must make some mention of
the representation associated to an elliptic curve over R or C. In these Archimedean
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cases there is no distinction between the Weil group and the Weil-Deligne group;
one puts.

W'(C/C) = W(C/C) = C*
and

W'(C/R) = W(C/R) = C* U JC¥*,
where
J?=—-land JzJ '=2z (2€CX).

The subgroup C* of W(C/R) is identified with W(C/C). Now if E is an elliptic
curve over C, then one associates to E/C the representation

OE/c = OE/C = $10® P01,
where

¥pq: W(C/C)=C* — C* (p,q € Z)
is the character
Ppglz) = 277274

Note in particular that og/c © ¢ = og/c, where ¢ denotes complex conjugation.
Thus if K is a number field with a complex place v and we identify the completion
K, with C in one of the two possible ways, then for an elliptic curve E over K, the

isomorphism class of the representation og/c is independent of the identification
chosen. If E is an elliptic curve over R then we put

og/r = 0p/R = indc/r $1,0 = indc/r Po,1-
With these definitions one has
resc/ROE/R = OE/C-

As in the non-Archimedean case, one can now attach local factors to E through
the intermediary of the associated representation of the Weil group. For our present
purpose it is enough simply to record the formulas

L(E/[C,s) = (22m)*I(s)), W(E/C)=-1
for an elliptic curve over C and
L(E/R,s) =2(2m)"°I'(s), W(E/R)=-1

for an elliptic curve over R. But for the sake of perspective we should at least
mention how one associates a representation of the Weil group to the cohomology
in some dimension n of an arbitrary smooth projective variety X over R or C. The
key ingredient is the Hodge decomposition

H™(X(C),C)= @ H"

pt+g=n

If X is a variety over C then we define

gx/C = @ Pp,g ® HP,
p+e=n
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where HP9 is regarded as a vector space with trivial action. If X is a variety over
R then we define

OXx/R = @ (indc/R (Pp.q) ® HP9

pta=n
P<q

® ((w—n/2€n/2) ®Hn/2,n/2,+)
® ((w—n/2€n/2+1) ® Hn/2,n/2,—) ,

where the second and third summands occur only for n even, and the meaning of
the new notation is as follows: Since X is defined over R, there is a natural action
of complex conjugation on X (C) and hence an induced C-linear automorphism
Do of H"(X(C),C). This satisfies $oo(HP9) = HIP; in particular, H™/21/? i
invariant under @,,. We let H™/2"/2+ and H™/2m/2~ denote the (+1)- and (—1)-
eigenspaces of $o, on H™2™/2, We also let w denote the character of W(C/R)
given by w(J) = 1 and w(z) = 2z for z € CX. As for €, it denotes the quadratic
character of W(C/R) with kernel W(C/C). Specializing now to the case where
X = E is an elliptic curve and n = 1, we obtain the representations indicated
previously, because in this case the Hodge decomposition is simply

H'(E(C),C) = H\ ¢ HO1

and both H'° and H%! are one-dimensional.

21. The global case

We conclude with a peek at the global setting. Let K be a number field of degree
n over Q with r; real and 2r; complex embeddings. Write D for the absolute value
of the discriminant of K and K, for the completion of K at a place v. Given an
elliptic curve E over K, we define its conductor N(E/K) by

NWE/K)= [] MNE/K.),
v finite

the right-hand side being interpreted as an ideal of the ring of integers of K in the
usual way. We also put

AE/K)= ]| A(E/K,)=DN(E/K))
v finite

and
W(E/K) = [[W(E/K.) = (-1)+ [ w(E/K,).
v v finite

Originally one defined the L-function of E to be the Euler product
L(E/K,s)= ] L(E/K,,s),

v finite

absolutely convergent for R(s) > 3/2. Nowadays one often includes the Archime-
dean L-factors in this product as well; alternatively, one incorporates them into

A(E/K,s) = A(E/K)**(2(2m)~°T'(s))"L(E/K, ).
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Now A(E/K, s) is conjectured to have an analytic continuation to an entire function
and to satisfy the functional equation

(21.1) A(E/K,s) =W(E/K)A(E/K,2 - s).

This implies in particular that

(21.2) W(E/K) = (—1)°rde= L(E/K.e),

In conjunction with the Birch-Swinnerton-Dyer Conjecture, (21.2) would give
(21.3) W(E/K) = (—1)rnkEE),

If K = Q and E occurs as an isogeny factor in the jacobian variety of some modular
curve, then (21.1) and hence also (21.2) -— but not yet (21.3) — are known, as a
consequence of work of Eichler, Shimura, Igusa, Ihara, Deligne, Langlands, and

Carayol.
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