Let D_x be the subalgebra of D given by labelings with both meridians labeled by x. The longitude labeling gives a canonical isomorphism $D_x \cong \mathbb{C}C_x$.

Here is a construction of modules of D from modules of D_x . If W is a (right) D_x -module then

$$W \underset{D_x}{\otimes} D$$

is a right *D*-module. For each y conjugate to x, fix $g_{x \to y} \in G$ conjugating x to y. That is, $g_{x \to y}^{-1} x g_{x \to y} = y$. Let $\{w_a\}$ be a basis of W. Then

$$\left\{w_a \otimes x \underbrace{g_{x \to y}}_{a,y}\right\}_{a,y}$$

forms a basis for $W \otimes_{D_x} D$.

If W is a simple D_x -module, then $W \otimes_{D_x} D$ is a simple D-module. Fix $x_{\alpha} \in \alpha$ for each conjugacy class $\alpha \subset G$. Let $\{W_j\}$ be a complete set of simples for $D_{x_{\alpha}}$. (The index j depends on x_{α} .) Then

$$V_{x_{\alpha},j} := W_j \underset{D_{x_{\alpha}}}{\otimes} D$$

forms a complete a set of simple *D*-modules.

In all of the following, write

$$S_3 \cong \langle s, r | s^2 = r^3 = (rs)^2 = e \rangle.$$

Example 1. There are eight simples in $D(S_3)$:

$$V_{e,0}, V_{e,1}, V_{e,2}, V_{s,0}, V_{s,1}, V_{r,0}, V_{r,1}, V_{r,2}.$$

For example, if w is a basis for the nontrivial rep of D_s , then

$$w \otimes_s \underbrace{\overset{e}{\longrightarrow}}, w \otimes_s \underbrace{\overset{r}{\longrightarrow}}, w \otimes_s \underbrace{\overset{r}{\longrightarrow}}$$

form a basis for $V_{s,1}$. And if w is a basis for the "first" nontrivial rep of C_r , then

$$w \otimes r \underbrace{}_{r} \underbrace{}_{()}, w \otimes r \underbrace{}_{()} \underbrace{}_{()}$$

is a basis for $V_{r,1}$. Here the 1 comes from calling the representation $r \mapsto \zeta$ the "first" representation and $r \mapsto \zeta^2$ the "second."

Example 2. $V_{r,1}$ is an example of interesting phenomenon. If you restrict $V_{r,1}$ to D_r and use the canonical isomorphism $D_r \cong \mathbb{C}C_r$, you get back the representation W_1 of C_r . If you restrict to D_{r^2} and use the canonical isomorphism $D_{r^2} \cong \mathbb{C}C_{r^2} = C_r$, you get back the representation W_2 . This has to do with the fact that s conjugates r to r^2 but acts as an outer automorphism on $C_r = C_{r^2}$.

Write

$$\pi_1^{C_s} = \frac{e-s}{2}$$

to denote the nontrivial projector in C_s . Then

is the nontrivial projector in D_s . Write it as

$$s \underbrace{\pi_1^{C_s}}_{\vdots}$$

It is then not hard to see that

$$s \underbrace{\bigwedge^{T_1^{C_s}}}_{(s)} + rs \underbrace{\bigwedge^{r-1}}_{(s)} * s \underbrace{\bigwedge^{T_2^{C_s}}}_{(s)} * s \underbrace{\bigwedge^{r-2}}_{(s)} + r^2 s \underbrace{\bigwedge^{T_2^{C_s}}}_{(s)} * s \underbrace{\bigwedge^{r-2}}_{(s)} * s \underbrace{\overset{r-2}}_{(s)} * s \underbrace{$$

is the projector for $\pi_{s,1} \in D$.

More generally,

$$\sum_{y \in \alpha} y \underbrace{g_{x \to y}^{-1}}_{(j)} \star \underbrace{\pi_j^{C_{x\alpha}}}_{x\alpha} \underbrace{f_j^{C_{x\alpha}}}_{(j)} \star x \underbrace{f_j^{C_$$

is the projector $\pi_{x_{\alpha},j}$. This shouldn't depend on the choices $g_{x_{\alpha} \to y}$ and in fact it doesn't:

$$\pi_{x_{\alpha},j} = \frac{1}{|C_{x_{\alpha}}|} \sum_{g} i(g^{-1}) \star \underbrace{\pi_{j}^{C_{x_{\alpha}}}}_{x_{\alpha}} \star i(g)$$

where

In the case of the group algebra, one can define an inner product on characters by

$$(\chi_V, \chi_W) = \dim \operatorname{Hom}_G(V, W) = \dim (V^* \otimes W)^G.$$

Since the coproduct is $g \mapsto g \otimes g$ and the antipode is $g \mapsto g^{-1}$, (χ_V, χ_W) is $\chi_{V^* \otimes W}$ applied to π_0 . In other notation, read left to right,

$$\langle \pi_0 \Delta(S \otimes \mathrm{id}), \chi_V \otimes \chi_W \rangle.$$

Since Schur's lemma holds for D, for D-modules V and W, define

$$(\chi_V, \chi_W) := \langle \pi_0, \chi_{V^* \otimes W} \rangle = \dim(V^* \otimes W)^G = \dim(\operatorname{Hom}_G(V, W))$$
$$= \langle \pi_{e,0} \Delta(S \otimes \operatorname{id}), \chi_V \otimes \chi_W \rangle.$$

Since

$$\pi_{e,0} = \frac{1}{|G|} \sum_{g} e \underbrace{ \bigcup_{g \in \mathcal{G}}}_{(g)} g$$

the inner product of characters can be written explicitly:

$$(\chi_V, \chi_W) = \frac{1}{|G|} \sum_{x,g} \chi_V \left(g^{-1} x g \underbrace{g^{-1}}_{\langle \downarrow \rangle} \right) \chi_W \left(x \underbrace{f^{-1}}_{\langle \downarrow \rangle} \right).$$

In this form, the inner product can be extended to all functions on $G \times G$. A character can of course be written

$$\chi_V = \sum_{x,g} \chi_V \left(x \underbrace{ \begin{array}{c} & g \\ & & \end{array} \right) \delta \underbrace{g}_{x} \underbrace{ \begin{array}{c} & g \\ & & \end{array} \right)}$$

Abuse notation, though, and write it as

$$\chi_V = \sum_{x,g} \chi_V \left(x \underbrace{ \begin{array}{c} g \\ \chi_V \end{array}}^g \right) x \underbrace{ \begin{array}{c} g \\ \chi_V \end{array}}^g.$$

If the cylinder on the right is interpreted with the - orientation, then this is consistent with χ_V as an element in D^* . The following identity follows holds:

~

$$\chi_{x_{\alpha},j} = \frac{1}{|C_{x_{\alpha}}|} \sum_{g \in G} i(g^{-1}) \star \chi_{\alpha} \underbrace{\chi_{j}^{C_{x_{\alpha}}}}_{x_{\alpha}} \star i(g)$$

where $\chi_j^{C_{x_{\alpha}}} = \frac{|C_{x_{\alpha}}|}{\dim W_j} \pi_j^{C_{x_{\alpha}}}.$

There's an automorphism of $Z(T^2)$ given by

$$x \underbrace{\bigcirc}_{x \mapsto g^{-1}} \underbrace{\searrow}_{x \mapsto g^{-1}} \underbrace{\bigcirc}_{x \mapsto g^{-1}} \underbrace{\longrightarrow}_{x \mapsto g^{-1}} \underbrace{\bigoplus}_{x \mapsto g^{-1}} \underbrace{\longrightarrow}_{x \mapsto g^{-1}} \underbrace{\longrightarrow}_{x \mapsto g^{-1}} \underbrace{\longrightarrow}_{x$$

This is (essentially) induced from the "rotate 90 degrees" map on $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. It is part of a more general $\mathrm{SL}_2\mathbb{Z}$ action on $Z(T^2)$. Let \mathcal{S} denote the restriction of this map to the characters. For example

$$\mathcal{S}(\chi_0) = \mathcal{S}\left(\sum_{g} e^{-1} \underbrace{\bigcup_{g}}_{g} \right) = \sum_{g} g^{-1} \underbrace{\bigcup_{g}}_{g} = \sum_{\alpha} \sum_{j} \frac{\dim V_{x_{\alpha},j}}{|G|} \chi_{x_{\alpha},j}$$

(the last equality can be seen by using the orthogonality of the characters). The map S provides an interesting automorphism of the characters that has no analog in the usual group algebra $\mathbb{C}G$.

As usual, let \star denote "horizontal multiplication":

$$x \underbrace{\bigcirc}^{g} \star y \underbrace{\bigcirc}^{h} \underbrace{\bigcirc}^{h} = \begin{cases} x \underbrace{\bigcirc}^{gh} & y = g^{-1}xg \\ 0 & \text{otherwise} \end{cases}$$

.

.

Define a new multiplication • called (aptly) "vertical multiplication":

$$x \underbrace{g}_{(h)} \bullet y \underbrace{h}_{(h)} = \begin{cases} xy \underbrace{g}_{(h)} & g = h \\ 0 & \text{otherwise} \end{cases}$$

Then $\chi_{V \otimes W} = \chi_V \bullet \chi_W$. In particular, indexing irreps of D by i,

$$\chi_i \bullet \chi_j = \sum_k n_{ij}^k \chi_k$$

where n_{ij}^k is the multiplicity of V_k in $V_i \otimes V_j$. And

$$\chi_i \star \chi_j = \begin{cases} \frac{|G|}{\dim V_i} \chi_i & i = j\\ 0 & \text{otherwise} \end{cases}$$

To make an analogy to the group algebra, \bullet is like the usual multiplication of characters, and \star is like the convolution of characters.

In classical Fourier analysis, the Fourier transform interpolates between multiplication of functions and convolution of functions. S plays the same role:

$$\mathcal{S}(\chi_i \bullet \chi_j) = \mathcal{S}(\chi_i) \star \mathcal{S}(\chi_j).$$

This identity immediately follows from the interpretation of S as rotation by 90 degrees.

Exercises:

1. Define a multiplication * on $(\mathbb{C}G)^*$ via

$$\delta_g * \delta_h = \delta_{gh}.$$

- (a) Show that there's an algebra isomorphism between $\mathbb{C}G$ (with the usual multiplication) and $(\mathbb{C}G)^*$ (with *). What do the projectors in $\mathbb{C}G$ correspond to?
- (b) Let χ_i be characters of $\mathbb{C}G$. Use the isomorphism from (a) to show that

$$\chi_i * \chi_j = \begin{cases} \frac{|G|}{\dim V_i} \chi_i & i = j\\ 0 & \text{otherwise} \end{cases}$$

(c) Now let *i* index the simple modules of D(G). Show that

$$\chi_i \star \chi_j = \begin{cases} \frac{|G|}{\dim Vi} \chi_i & i = j\\ 0 & \text{otherwise} \end{cases}$$

2. Compute the 8×8 matrix for S mapping the characters of $D(S_3)$ to itself.

3. Let i index the simple modules of D(G). Write

$$V_i \otimes V_j \cong \bigoplus_k V_k^{n_{ij}^k}.$$

Compute n_{ij}^k in terms of the matrix entries S_a^b of S: $S(\chi_a) = \sum_b S_a^b \chi_b$, and the entries of its inverse.