
A unital associative algebra (over C, say) is a vector space A together with
a map

i : C→ A

and a map
m : A⊗A→ A

that satisfy a left unit axiom

A = C⊗AidA⊗ i //

idA

''

A⊗A
m
��

A

(and similarly a right unit axiom) and an associativity axiom

A⊗A⊗Am⊗ idA //

idA⊗m
��

A⊗A
m
��

A⊗A m // A

.

Abuse notation and write 1 ∈ A for i(1) and write multiplication ab as
m(a⊗ b). Then these axioms translate to

1a = a, a(bc) = (ab)c.

Note that A⊗A picks up an algebra structure (a⊗ b)(c⊗ d) = ac⊗ bd. A
Hopf algebra consists of three extra maps

∆ : A→ A⊗A algebra morphism

ε : A→ C algebra morphism

S : A→ A algebra antimorphism

that satisfy the extra commutative diagrams

A = C⊗A A⊗A
idA⊗ ε
oo

A

∆

OO

idA

gg

(and also a similar diagram with A⊗C)

A⊗A⊗A A⊗A
∆⊗ idA

oo

A⊗A

idA⊗∆

OO

A
∆

oo

∆

OO
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A⊗A S⊗ idA // A⊗A
m

##

A

∆
;;

ε //

∆

##

C i // A

A⊗A idA⊗S // A⊗A

m

;;

The first two diagrams are obtained from the algebra diagrams, reversing ar-
rows and replacing i ↔ ε and m ↔ ∆. The last diagram is self-dual in this
sense.

If V and W are right modules of A, then V ⊗W is naturally a right A⊗A-
module, but not an A-module. Similarly, V ∗ is a left A-module, but not a right
A-module. The field C does not necessarily admit an action by A. The point
of a Hopf algebra is that V ⊗W , V ∗ and C become right A-modules. Namely,
for a ∈ A:

(v⊗w) · a := (v⊗w) ·∆(a), v ∈ V, w ∈ W

〈v, ξ · a〉 := 〈v · S(a), ξ〉, v ∈ V, ξ ∈ V ∗

z · a := ε(a)z, z ∈ C.

The counitality axiom, for example, says that the natural map

V ⊗C→ V

v⊗ 1 7→ v

is a map of A-modules and the coassociativity axiom says that

V ⊗(W ⊗U)→ (V ⊗W )⊗U

v⊗w⊗u 7→ v⊗w⊗u

is a map of A-modules.
If A is finite dimensional, then A∗ is a Hopf algebra with multiplication

∆∗, unit ε∗, comultiplication m∗, counit i∗, and antipode S∗.
The 2D theory assigns to I a vector space and assigns to −∆2 a multipli-

cation on that vector space. Hence I is assigned an algebra. Similarly, the 3D
theory will assign to I × S1 a vector space and and will assign to −∆2 × S1 a
multiplication on that vector space. Hence I ×S1 will be assigned an algebra.
In fact, this algebra will be a Hopf algebra. Each part of the Hopf algebra
structure can be seen topologically. This is the content of what follows.

Redefine D = D(G) to be the vector space

D := Z(I × S1,+)
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where here the + orientation is as follows1:

D = C



x,g∈G

.

This orientation is part of a more general statement that ∆n × ∆m inherits
a ∆-complex structure plus an orientation. The orientation I’m calling “+”
on I × S1 is the canonical one inherited from I × I = ∆1 ×∆1. Rather than
describe the oriented ∆-complex structure on ∆n ×∆m, I will work on a case
by case basis. Here are the ∆-complex structures on I ×∆2 and ∆2 × I:

.

The positive orientation on I×∆2 is the following: read left to right, the three
3-simplices are oriented +, −, +. The positive orientation on ∆2 × I is the
following: read fron to back, the three 3-simplices are oriented +, −, +.

The following two points can be checked:

• In ∂(I × ∆2), the two front rectangles get the − orientation and the
back rectangle gets the + orientation. The top triangle is positive and
the bottom triangle is negative.

• In ∂(∆2×I), the two top rectangles get the + orientation and the bottom
rectange gets the − orientation. The left and right triangles are oriented
− and +, respectively.

∆2 × S1 inherits a ∆-complex structure from ∆2 × I, obtained by gluing
together the two triangles on the side. Then

Z(−∆2 × S1) =
∑
x,g,h

where the picture on the right is to be thought of as the boundary of ∆2× S1

(it’s hard to indicate via illustration that it shouldn’t be filled in). After

1In the picture of the rectangle, the top and bottom edges should be identified (in par-
ticular they are both labeled g).
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ungluing then,

Z(−∆2×S1) =
∑
x,g,h

unglue→ .

This is in D∗⊗D∗⊗D, and hence gives a multiplication in D:

? =


if y = g−1xg

0 otherwise

.

In these pictures, the top and bottom edges of the rectangles should be thought
identified.

Similarly to the 2D theory, the identity element can be obtained by gluing
together two sides of ∆2 × S1. Namely make the following identification (side
triangles still thought to be identified):

to get

.

Then by the gluing theorem,

Z
( )

=
1

|G|
∑
x,g,h

⊗

〈
,

〉

=
1

|G|
∑
x,g,h

δgh=g =
∑
x

the identity in D. The factor of 1
|G| comes from a newly interior vertex.
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Let (I×∆2)′ denote I×∆2 with the three edges (∆2)0×I identified. Then
(note negative orientation)

− ∂→

(with the three horizontal edges identified). Thus, after ungluing,

Z(−(I ×∆2)′) ∈ D∗⊗D⊗D⊗Z(∆2)⊗Z(∆2)∗.

This is not a coproduct on the nose, since a coproduct would live inD∗⊗D⊗D,
but in this setting one can forget the triangles on the end and no harm will
come of it. Thus, consciously abusing notation, write

Z(−(I×∆2)′) =
∑
a,b,g

∂


 unglue→ .

Written as a map D → D⊗D, Z(−(I ×∆2)′) is therefore

7→
∑
ab=x

⊗

Again, the top and bottom of these rectangles should be thought identified.
The counit is related to the solid torus but with the roles of the meridian

and longitude switched, thus

ε =
∑
g

.
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The complex for the antipode is constructed from two complexes:

The first is obtained from two copies of ∆2×I and second is obtained from two
copies of I ×D2. Identify the left and right sides together. Call the result K0

for the moment. The boundary of the resulting complex is (with orientations
indicated)

but, as before, forget the bigons on the ends. Then, consciously abusively,

Z(K0) =
∑
x,g

∈ D∗⊗D.

As a map D → D, S is

S


 =


 .

Exercise:

1. (a) Write out the Hopf algebra structure for CG (e.g., unit, multiplica-
tion, counit, antipode, coproduct).
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(b) Since CG is a Hopf algebra, (CG)∗ is also a Hopf algebra. What is
it isomorphic to? What are the simple modules of (CG)∗ and how
do they behave under tensor product?

(c) (for fun) 2D Dijkgraaf-Witten spits out the algebra CG, but just the
algebra structure. Is there any way to work out the Hopf algebra
structure on CG from the topology of 2-complexes?

2. Let A be a Hopf algebra. Show that the counitality axiom implies that
V ∼= V ⊗C as A-modules.

3. One of the axioms of a Hopf algebra is that (composition left to right)

∆ ◦ S⊗ id ◦m = ε ◦ i = ∆ ◦ id⊗S ◦m.

What property does this imply for the modules of A? (It might help to
consider the case of CG first.)

4. In a Hopf algebra A, ∆ must be an algebra map, i.e.,

mA ◦∆ = ∆⊗∆ ◦mA⊗A.

Show this holds for D(G) by exhibiting a ∆-complex for each side.
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