
Definition 1. A manifold with boundary is a (Hausdorff, second countable)
topological space X such that ∀x ∈ X there exists an open U 3 x and a
homeomorphism φU : U → Rn or a homeomorphism φU : U → R≥0 × Rn−1.

Informally, a manifold is a space where every point has a neighborhood
homeomorphic to Euclidean space. Think about the surface of the earth.
Locally when we look around it looks like R2, but globally it is not. The surface
of the earth is, of course, homeomorphic to the space S2 of unit vectors in R3.
If a point has a neighborhood homeomorphic to Rn then it turns out intuition
is correct and n is constant on connected components of X. Typically n is
constant on all of X and is called the dimension of X. A manifold of dimension
n is called an “n-manifold.”

The boundary of the manifold X, denoted ∂X, is the set of points which
only admit neighborhoods homeomorphic to R≥0 × Rn−1.

For example, here’s a (2-dimensional) manifold with boundary:

. (1)

The point x is in the interior (it has a neighborhood homeomorphic to R2)
and the point y is on the boundary (it has a neighborhood homeomorphic to
R≥0 × R.)

The term “manifold with boundary” is standard but somewhat confusing.
It is possible for a “manifold with boundary” to have empty boundary, i.e., no
boundary. I will simply say “manifold” to mean “manifold with boundary.”
All manifolds are going to be compact.

A manifold is called “closed” if it is compact and without boundary. An
example of a closed 2-manifold is S2. An example a non-closed 2-manifold is
R2.

Example 2. The closed 2-manifolds all look like one of the following:

· · · .

The one with g “holes” is called the closed surface with genus g, denoted Σg.
For example Σ0 is S2 and Σ1 is T 2.

Recall that a ∆-complex can be thought of as a space obtained by gluing
together simplices. Here are two different ways of gluing together 2-simplices
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to get a manifold homeomorphic to S2:

.

Here’s a ∆-complex structure on the torus:

.

And here’s a ∆-complex structure on the torus minus a disk, (1),

. (2)

Gluing two of these together gives a ∆-complex on the closed surface of genus
2.

Given a ∆-complex K, recall that |K| denotes the underlying topological
space. Note that a ∆-complex structure on a manifold M induces a ∆-complex
structure on ∂M .

Definition 3. Let K be a ∆-complex. Let Cn(K) be the free abelian group
on the set of n-simplices of K. Cn(∂K) sits naturally as a subgroup of Cn(K).
Let Cn(K, ∂K) := Cn(K)/Cn(∂K). Cn(K) is called the group of n-chains in
K.

If f : K → K ′ is a combinatorial equivalence, then f induces a map
Cn(K)→ Cn(K ′). This map will (abusively) also be denoted by f .

Observe that there are n+ 1 copies of ∆n−1 in the boundary of ∆n. Each
corresponds to removing one vertex from ∆n:
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.

Given σ an n-simplex let σ|[01···̂i···n] denote the boundary (n− 1)-simplex that
forgets the ith vertex. Turn the above decompositions into a map on chains:

Definition 4. Define ∂ : Cn(L)→ Cn−1(K) by

∂σ =
n∑
i=0

(−1)iσ|[01···̂i···n]

for σ an n-simplex in K.

The reason for the signs is to ensure ∂ ◦ ∂ = 0. This is consistent with the
idea that “the boundary of a boundary is empty.”

Example 5. If σ is the unique n-simplex in the ∆-complex ∆n, then

∂σ = σ|[1···n] − σ|02···n] + · · ·+ (−1)nσ|[01···(n−1)].

Let

denote σ for n = 2. (Alternatively, put a 1 instead of a + in the center of the
triangle.) A negative sign would indicate −σ. Then for simplicity write the
boundary map ∂ : C2(∆

2)→ C1(∆
2) as

.

Example 6. Let

K =

and let x ∈ C2(K) be the following chain

x = .
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Then ∂x is

.

Note that ∂ maps Cn(K)→ Cn−1(K) but you can project onto Cn−1(K, ∂K).
The following theorem will not be proved here but is standard in algebraic
topology:

Theorem 7. If |K| is a connected n-manifold, then ker(∂ : Cn(K)→ Cn−1(K, ∂K))
is isomorphic to either Z or 0.

When this kernel is Z, the manifold is called orientable and a generator is
called an orientation class. In the case of 0, the manifold called nonorientable.
If there are multiple connected orientable connected components, an orienta-
tion class is a sum of orientation classes for each component. If K is a complex
and xK an orientation class for K, denote the “oriented manifold” by the pair
(K, xK).

Here’s a typical example of an orientation class on the one-holed torus (see
(2))

.

The interior edges all cancel in pairs under the boundary map. The image
of the boundary map is −1 times the boundary 1-simplex. This example
illustrates the following observation: if (K, xK) is an oriented manifold, then
(∂K, ∂xK) is an oriented manifold.

Recall Hom(K,G) = Hom(π1(K;K0), G) and this set is in bijection with
labelings of the edges of K by elements of G such that 2-simplices are labeled
like

.

Definition 8. 2D Dijkgraaf-Witten theory is the following collection of data.
Given an oriented 1-manifold (L, xL) with ∆-complex structure, let Z(L, xL) =

CHom(L,G). It will be helpful to include the empty 1-manifold and set
Hom(∅, G) to be a single element set. Z(∅, x∅) is canonically isomorphic to
C.

Define the following operations on Z(L, xL):
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• A gluing map given by sticking together G-labelings along oppositely
oriented portions of ∂L, e.g.,

glue : Z
( )

⊗
( )

→ Z
( )

.

⊗ 7→ .

• An ungluing map given by splitting together G-labelings along a sub-
complex

unglue : Z
( )

→ Z
( )

⊗
( )

7→ ⊗ .

• A pairing map between the vector spaces for oppositely oriented com-
plexes:

Z(K, xL)⊗Z(L,−xL)→ C

φ⊗ψ 7→

{
1 φ = ψ

0 otherwise
.

Let (K, xK) be an oriented 2-manifold with ∆-complex structure. For
φ ∈ Hom(K,G), write ∂φ for the restriction of φ to ∂K. Use the same letter
Z to assign too (K, xK) an element in Z(∂K, ∂xK):

Z(K, xK) :=
1

|G|K0\(∂K)0

∑
φ∈Hom(K,G)

∂φ ∈ Z(∂K, ∂, xK).

This ends the definition of 2D Dijkgraaf-Witten theory.

Note that the gluing and ungluing maps are isomorphisms. This will not
be the case in the 3D version.

Example 9. Let (K, xK) be a closed connected 2-manifold. Then

Z(K, xK) =
|Hom(π1|K|, G)|

|G|
.

In particular, Z(K, xK) does not depend on the orientation nor the ∆-complex
structure for |K|.

The previous example is part of the more general theorem:

Theorem 10. Z(K, xK) only depends on the oriented ∆-complex structure on
∂K.

5



Proof. By construction, Hom(K,G) = Hom(π1(|K|, K0), G) depends only on
the vertex set K0 and not on the higher skeletons of K. Adding a new point
in the interior adds G-many new elements to Hom(K,G).

Z(K, xK) does depend on the oriented ∆-complex structure on ∂|K| be-
cause, while the underlying vector space for Z(∂K, ∂xK) only depends on
(∂K)0 and not on ∂xK , Z(∂K, ∂xK) fits into gluing, ungluing, and pairing
operations that depend on the oriented ∆-complex structure of ∂K.

Example 11. Write

A := Z

( )
.

Since the pairing map

Z

( )
⊗Z

( )
→ C

is nondegenerate, it can be used to identify

A∗ ∼= Z
( )

.

Note that

Z(−∆2) =
∑
g,h

.

After applying an ungluing map, this becomes

Z(−∆2)
(unglued)

=
∑
g,h

∈ A∗⊗A∗⊗A.

This gives a multiplication in A. In fact, A is canonically isomorphic to the
group algebra:

A→ CG.
7→ g.

Theorem 12 (Gluing Theorem). Let (K, xK) be an oriented 2-manifold and
suppose ∂K = L1 ∪ L2 ∪ L3 where each 1-simplex in ∂K lies in exactly one
of the Li. Write ∂xK = xL1 + xL2 + xL3 for xLi

∈ C1(Li). Let u denote the
ungluing map

u : Z(∂K, ∂xK)→ Z(L1, xL1)⊗Z(L2, xL2)⊗Z(L3, xL3).

Suppose that there’s a combinatorial equivalence f : L1 → L2 such that
f(xL1) = xL2. Let K ′ be the result of starting with K and gluing L1 to L2

using f . Then xK descends to an orientation class xK′ for K and

Z(K ′, xK′) =
1

|G|#(newly interior vertices)
tr12(u(Z(K,xK)))
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where tr12 denotes the pairing of the Z(L1, xL1) and Z(L2, xL2) factors (using f
to identify Z(L1, xL1) with Z(L2,−xL2)). The phrase “newly interior vertices”
means interior vertices in (K ′)0 that do not come from interior vertices of K.

Proof. Exercise.

The picture to have in mind is

.

Example 13. Start with ∆2 and glue two sides together. Then

Z

( )
=

1

|G|
∑
g,h

=
1

|G|
∑
g,h

δgh=h = .

Remark 14. Z(−∆2) gives A a multiplication and Z
( )

gives a unit for

the multiplication. Dually, Z(∆2) gives A a “Frobenius comultiplication” A→
A⊗A, and Z

( )
gives A a “Frobenius counit” A→ C. These data give A

the structure of a Frobenius algebra. This is different than a bialgebra.

Write

to denote a linear map f : V → V . Alternatively, an element of V ∗⊗V .
Reading an arrow in reverse is the adjoint map, gluing arrows end to end is
composition (equivalently, contraction of V ⊗V ∗ → C), and therefore

is the identity map V → V and
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is the trace of the map f : V → V . Disjoint union stands for tensor product,
so

(3)

stands for f ⊗ g : V ⊗V → V ⊗V . One can also, however, think of (3) as a
map End(V )→ End(V ) as follows:

namely, precomposition by f and postcomposition by g. Similarly,

gives composition of endomorphisms

i.e., multiplication in the algebra End(V ). Let {Vi} be a collection of vector
spaces. Then the multiplication in the algebra

⊕
i End(Vi) is∑

i

.

If {Vi} is a complete collection of simple modules for A, this describes the
multiplication for A under the isomorphism A ∼=

⊕
i End(Vi).

The red arrows permit the following very elegant notation:

Z

  =
∑
i

.

The simplex is drawn on the right side to indicate context (i.e., where are the
two inputs and where is the output).

According to the gluing theorem, gluing together simplices along oppositely
oriented faces corresponds to contracting A with A∗. Under the isomorphism
A ∼=

⊕
i End(Vi), this translates to gluing the ends of arrows together—if the

labeling i matches on the two arrows. For example

Z


 =

∑
i
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and

Z

( )
=

1

|G|
∑
i

=
∑
i

dimVi
|G|

.

so therefore

Z

  =
∑
i

dimVi
|G|

  . (4)

Think of (4) as a map A→ A∗. Then its inverse is given by

Z

 
so that

Z

  =
∑
i

|G|
dimVi

.

Gluing two of these onto −∆2 and also gluing on a copy of (4), then

Z

  =
∑
i

|G|
dimVi

.

Exercises:

1. Write down a ∆-complex structure for a closed surface of genus g. Is it
orientable?

2. Write down a ∆-complex structure for the Mobius band. Glue two of
these together. Is the result orientable?

3. Let C be the cylinder oriented so the two ends are oriented oppositely.
As a map Z(S1,+)→ Z(S1,+), what is it?

4. Show that, after ungluing and identifying Z(I,+) with CG, that

Z

 
gives a map

g 7→ δg−1 .

Find an oriented complex K that gives the inverse to this map.
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5. After identifying Z(I,−) with (CG)∗, show that

Z

( )
= δe.

The red arrows indicate that

Z

( )
=

1

|G|
∑
i

=
∑
i

dimVi
|G|

.

Check using orthogonality of characters the identity

δe =
∑
i

dimVi
|G|

χi.

6. Show that

Z

  =
∑
i

dimVi
|G|

  .

7. Prove the assertion (mentioned in the lecture) that

Z

  =
∑
i

|G|
dimVi

.

8. Prove Mednykh’s formula:

|Hom(π1Σg, G)|
|G|

=
∑
i

(
|G|

dimVi

)2g−2

.
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