
General references for topology are Munkres’s book on Topology and Hatcher’s
book on Algebraic Topology.

Let X be a topological space. Write I = [0, 1] for the closed interval. All
maps are continuous.

Definition 1. A path in X is a map γ : I → X:

.

Write x = γ(0) and y = γ(1). Then γ is often said to be a path from x to y,
denoted x→ y.

Definition 2. A homotopy from γ0 to γ1 is a map h : I × I → X such that

h(t, 0) = γ0(t), h(t, 1) = γ(t)

.

Definition 3. Let γ0 and γ1 be two paths from x to y. A homotopy from γ0
to γ1 rel endpoints is a homotopy such that h(0, s) = x and h(1, s) = y for all
s ∈ I:

.

Write γ0 ' γ1 if there is a homotopy from γ0 to γ1. In what follows homo-
topies will always be rel endpoints. Homotopy rel endpoints is an equivalence
relation.

Definition 4. Given γ0 from x0 to x1 and γ1 from x1 to x2. Define the
concatenation γ0 ∗ γ1 : I → X by “first move along γ0 from t = 0 to t = 1

2

then move along γ1 from t = 1
2

to t = 1” or, formally,

(γ0 ∗ γ1)(t) =

{
γ0(2t) 0 ≤ t ≤ 1

2

γ1(2t− 1) 1
2
≤ t ≤ 1

.
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.

Definition 5. Let γ(t) = γ(1− t). This runs the path γ in reverse.

Definition 6. Let cx denote the constant path at x ∈ X.

Claim 7. If γ is a path from x to y, then γ ∗ γ ' cx.

Proof. This proof is best thought of as “run along γ until γ(s) and then run
backwards to γ(0)—then take s from 1 to 0.” But here it is precisely:

γs(t) := γ((1− s)t)

h(t, s) := (γs ∗ γs)(t)

gives the relevant homotopy.

Claim 8. Let γ be a path from x to x. Then γ ∗ cx ' γ.

Proof. This proof is best thought of as “spend a fraction s of the time on γ
and the rest at x—then take s from 1 to 0.” But here it is precisely:

h(t, s) :=

{
γ((2− s)t) 0 ≤ t ≤ 1

2−s
x 1

2−s ≤ t ≤ 1
.

Let π1(X, x) be the set of homotopy classes of maps x→ x.

Proposition 9. π1(X, x) is a group with multiplication and unit:

[γ][η] = [γ ∗ η]

1π1(X,x) = [cx].

Proof. You can check that multiplication is well-defined: it does not depend
on the choice of curve in the homotopy class [γ]. The previous two claims
show that [γ] is an inverse to [γ] and that [cx] is the identity. It is an exercise
to check that

((γ ∗ η) ∗ η) ' (γ ∗ (η ∗ ξ))

proving associativity.

π1(X, x) is called “the fundamental group of X.”

Definition 10. For f : (X, x)→ (Y, y), let f∗ : π1(X, x)→ π1(Y, y) be defined
by f∗([γ]) = [f ◦ γ].
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It is not hard to see that if x and y are in the same path component of
X, then π1(X, x) ∼= π1(X, y). Sometimes, if the basepoint is not important,
π1(X, x) is (abusively) denoted π1(X).

Example 11. π1(S
1, x) ∼= Z. Any loop from x to x is homotopic to the

standard curve winding around n times: t 7→ e2πint for some n ∈ Z.

Idea of Proof. Think of S1 as R/Z let x be the class of the integers. Any curve
looping around S1 can be factored as a map

I → R→ R/Z = S1.

Because R is affine, it is easy to straighten out the path I → R to be straight
between its endpoints.

The following is easy to see:

Claim 12. π1(X × Y, (x, y)) ∼= π1(X, x)× π1(Y, y).

Example 13.

S1 × S1 ∼=

so that

π1

( )
∼= Z× Z.

Here are explicit generators:

.

Given pointed spaces (X, x) and (Y, y) let

X ∨ Y = (X t Y )/x ∼ y

that is, X and Y glued together at x = y.

Example 14. I will not prove it here, but it is believable that

π1(X ∨ Y, x) ∼= π1(X, x) ∗ π1(Y, y)

the free product of the fundamental groups of X and Y . For example, the fun-
damental group of the wedge of two circles is the free group on two generators.
The two generators are loops going once around each circle.

More generally:
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Theorem 15 (Seifert-van Kampen). Write X = U∪V for U, V path-connected
open sets such that U ∩ V is path connected. Denote the inclusions by

iU : U ∩ V ↪→ U

iV : U ∩ V ↪→ V.

Fix x ∈ U ∩ V . Then

π1(X, x) ∼= (π1(U, x) ∗ π1(V, x))/N

where N is the smallest normal subgroup containing

(iU)∗[γ]((iV )∗[γ])−1

for each [γ] ∈ π1(U ∩ V, x).
Informally: the fundamental group of X and Y glued along Z is the free

product of the fundamental groups of X and Y , modulo identifying correspond-
ing curves in the copies of Z in X and Y .

Example 16. The torus can be thought of as a square with opposite sides
identified:

.

Therefore

.

The last space can easily collapsed onto two circles, so it turns out that the
fundamental group is isomorpic to Z ∗ Z with generators

.

Tracing out the boundary shows that the boundary is homotopic to aba−1b−1.
Hence

π1


 ∼= 〈a, b〉 ∗ 〈c, d〉/(aba−1b−1 = cdc−1d−1)

= 〈a, b, c, d|aba−1b−1c−1d−1cd = e〉.
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The fundamental group is great because it is a group. It is not so great
because it only sees one path component of X. You want to be able to talk
about

π1

( )
=???.

To talk about multiple basepoints, it is necessary to introduce the notion of a
category.

Definition 17. A category C is

• a collection of objects Obj(C) and collections of morphisms Mor(x, y) for
each x, y ∈ Obj(C)

• associative composition maps

◦ : Mor(x, y)×Mor(y, z)→ Mor(x, z)

• identity morphisms idx ∈ Mor(x, x) such that idx acts as the identity for
composition

A category can be thought of as a collection of dots and arrows, where if
two arrows lie end to end their composition is also an arrow.

Example 18. Fix a group G. Define the category ∗//G to be the category
with a single object ∗, Mor(∗, ∗) = G, and composition given by group multi-
plication.

Example 19. More generally, let S be a set acted on by G (on the right, say).
Define a category S//G by Obj(S//G) = S and a morphism from s0 to s1 if
s1 = s0g.

Example 20. Let X be a topological space and S a nonempty subset of
X. Let π1(X;S) be the category with objects S and Mor(x, y) the homotopy
classes (rel endpoints, as usual) of curves from x to y.

For example, if S = {x} is a single point, then π1(X; {x}) is isomorphic1 to
∗//π1(X, x). After all, they each have one object and one morphism for every
homotopy of class of loop based at x.

I will call π1(X;S) the fundamental groupoid of X with respect to S.
Typically S will be a finite set. Officially, the phrase “fundamental groupoid”
is reserved for π1(X;X). The word groupoid comes from

Definition 21. A groupoid is a category where every morphism is invertible.

1I have not defined what is meant by isomorphism here but the interested reader may
investigate.
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Note that in a groupoid all the sets Mor(x, x) are all isomorphic groups.
Just as there are morphisms between groups that preserve the structure

(composition, identity), there are morphisms between categories that preserve
the structure (composition, identity). For whatever reason, they’re not called
“category homomorphisms” but rather called “functors”:

Definition 22. Let C and C ′ be categories. A functor F : C → C ′ is a map

F : Obj(C)→ Obj(C ′)

and a map
F : Mor(x, y)→ Mor(F (x), F (y)).

(Note the same letter F is used in two different ways. This is standard.) F
must satisfy that

F (f ◦ g) = F (f) ◦ F (g)

F (idx) = idF (x) .

Example 23. The functors ∗//G → ∗//H are essentially the same as group
homomorphisms G→ H.

Definition 24. Let Hom(π1(X;S), G) be the set of functors π1(X;S)→ ∗//G.

Intuitively, Hom(π1(X;S), G) is the assignment of a group element g ∈ G
to each curve in X in a way invariant under homotopy and consistent with
composition. By the last example, Hom(π1(X; {x}), G) is essentially the same
thing as Hom(π1(X, x), G).

Example 25. Hom(π1(T
2), G) is in bijection with pairs of commuting ele-

ments in G. A bijection is set by picking a pair of generators of π1(T
2).

Example 26. Consider the cylinder a basepoint on each end:

.

The following two arrowed curves generate the fundamental groupoid with
respect to these points

.

Hence
Hom

(
π1

( )
, G
)

is in bijection with assignments of (x, g) ∈ G2 to these two curves:

and
CHom

(
π1

( )
, G
)
∼= D(G)

as vector spaces.
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Example 27. Just as there is a group algebra there is a groupoid algebra
that has a basis given by the arrows of the groupoid. Composition of basis
elements in the algebra is 0 if composition is not defined in the groupoid. You
can check that D(G) is isomorphic to the groupoid algebra of G//G where G
acts on itself by conjugation.

Claim 28. Let S ′ be obtained from S by adding a new point s′ ∈ X that lies
in the same path component of some s ∈ S. Then

Hom(π1(X;S ′), G) ∼= G× Hom(π1(X;S), G).

Proof. Let γ be a fixed path from s to s′. Any hom from π1(X;S ′) to G is
determined by its restriction to π1(X;S) and the group element to which the
morphism [γ] is sent.

Corollary 29. Let X be path-connected and let S ⊂ X be a finite subset.
Then the quantity

|Hom(π1(X;S), G)|
|G||S|

does not depend on the set S. In particular, it is always equal to

|Hom(π1(X), G)|
|G|

.

WriteGS to denote functions S → G. Define aGS action on Hom(π1(X;S), G)
(the “gauge action”) by

φ · f = f(γ(0))−1φ(γ)f(γ(1)), φ ∈ Hom(π1(X;S), G), f ∈ GS.

In pictures, here’s an action of (k1, k2) ∈ G2:

=

=

When S is a single point, this is the conjugation action on the set Hom(π1X,G).
Let s0 ∈ S. Claim 28 can be rephrased as: G{s0} acts freely if s0 shares a path
component with another element of S.
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Here is the idea behind quantum knot invariants. Remove a neighborhood
of a knot in S3:

.

Write M for S3 minus the neighborhood of the knot. As pictured, also pick a
basepoint x in the boundary ∂M together with a choice of two directed curves:
one bounds a disk in S3 and the other runs once around the knot. An element
in Hom(π1(∂M, x), G) is determined by the image of the blue and green curves.
Let x ∈ G be the image of the blue curve and g ∈ G be the image of green
curve. Then an element in Hom(π1(∂M, x), G) can be written

.

This provides a map

i : CHom(π1(∂M, x), G)→ D(G).

7→ .

For φ ∈ Hom(π1(M,x), G), write ∂φ to denote its restriction to ∂M . Then

I(K) =
∑

φ∈Hom(π1(M,x),G)

i(∂φ)

is an invariant of the knot (plus choice of green curve) that lives in D(G). In
fact, it lives in the center of D(G) and so can be written2

I(K) =
∑
i

aiπi

where πi are the projectors of D(G). Each coefficient ai is also an invariant of
the knot (plus choice of green curve). These are quantum link invariants.

Here, as always, G is a finite group. If it were to work for SU(2) (which
it doesn’t) then the Jones polynomial (evaluated suitably) would correspond
to the coefficient of the 2d irrep of SU(2) (thought of as the stabilizer of the
identity in SU(2)?).

One way to construct topological spaces is to glue together “simplices.”

2Next week, this will be written in terms of the characters χi instead of the projectors
πi (because of the way I choose to orient things).
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Definition 30. Suppose x0, . . . , xn is an ordered set of n+1 points in Rn that
do not lie a lower-dimensional affine subspace. Their convex hull{

n∑
i=0

tixi

∣∣∣∣∣
n∑
i=0

ti = 1

}
⊂ Rn

is called an n-simplex. There is a unique affine transformation taking one
n-simplex to another preserving the vertex ordering. Hence all such simplices
will be identified and called “the” n-simplex. It is denoted ∆n. Note that
I = ∆1.

The n-simplex is often drawn with arrows on its edges indicating the order
of the vertices: the arrows point forward in the ordering of the vertices. Here
is a 2-simplex and a 3-simplex.

.

A ∆-complex is a space built out of gluing together simplices along sub-
simplices using affine maps in a manner respecting the vertex ordering. For
us, all ∆-complexes will contain finitely many simplices. For more technical
details on ∆-complexs see Hatcher section 2.1. Here are some ∆-complexes:

.

A ∆-complex structure on a space X is homeomorphism from X to a ∆-
complex. In practice this is a decomposition of X into simplices with arrows
on their edges.

Let K be a ∆-complex. Write |K| for the underlying topological space.
Write Ki for the restriction to all k simplices for k ≤ i. In particular, K0 is
the set of vertices.

It is a fact that any curve with endpoints in K0 can be homotoped rel
endpoints to a curve lying in K1. Hence

Claim 31. Hom(π1(|K|, K0), G) is in bijection with labelings of the edges of
K such that any 2-simplex is labeled like

.
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For simplicity, write

Hom(K,G) := Hom(π1(|K|, K0), G).

Definition 32. A combinatorial equivalence f : K → K ′ is a homeomorphism
that takes simplices to simplices and preserves the orderings of the vertices.

Exercises:

1. Compute a presentation for the fundamental group of a surface of genus
g.

2. Show how the multiplication inD(G) comes from considering Hom(π1(∆
2×

S1;S), G) for a S a certain subset of three points on the boundary of
∆2 × S1.

3. Let G be a finite group.

(a) It is true that

∑
g,h

ghg−1h−1 =
∑
i

(
|G|

dimVi

)2

πi

Explain how the coefficients on the right are like quantum link
invariants for a one-holed torus.

(b) (hard) Prove the formula (hint:
∑

g,h ghg
−1h−1 =

∑
α |Cα|α · α−1

where α =
∑

g∈α g and α are the conjugacy classes of G).
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