This material will not be on the midterm or the final! I indicate it here as an application of the some of the linear algebra we've seen this week.

Suppose you're a researcher studying the effects of the dosages of two medicines on the lifespans of mice. You might collect the following data on 100 mice (units omitted):

	Dose of Medicine 1	Dose of Medicine 2	Lifespan
Mouse 1	250	90	2
Mouse 2	200	100	2.5
Mouse 3	150	150	1.5
÷	:	:	
Mouse 100	110	170	2.7

Suppose you think that, approximately

Lifespan
$$\approx a_1$$
 (Dose of Medicine 1) + a_2 (Dose of Medicine 2)

for some numbers a_1 and a_2 . That is, suppose you think that Lifespan is a linear function of the doses of the two medicines. Then you would like to estimate from your data the coefficients a_1 and a_2 . Let v_1 be the column vector for the doses of medicine 1:

$$v_1 = \begin{pmatrix} 250\\ 200\\ 150\\ \vdots\\ 110 \end{pmatrix}$$

let v_2 be the column vector for the doses of medicine 2:

$$v_2 = \begin{pmatrix} 90\\100\\150\\\vdots\\170 \end{pmatrix}$$

and let w be the column vector of lifespans:

$$w = \begin{pmatrix} 2\\ 2.5\\ 1.5\\ \vdots\\ 2.7 \end{pmatrix}.$$

If it were exactly true that

Lifespan = a_1 (Dose of Medicine 1) + a_2 (Dose of Medicine 2)

for some numbers a_1 and a_2 , then it would be true that

$$w = a_1 v_1 + a_2 w_2$$

so w would be in the span of v_1 and v_2 . In general, w won't be in the span of v_1 and v_2 . However, let \tilde{w} be the orthogonal projection of w to the span of v_1 and v_2 . Then \tilde{w} is the closest point to w in the span in the span of v_1 and v_2 . Therefore $\tilde{w} = a_1v_1 + a_2v_2$ for some a_1 and a_2 and \tilde{w} is the closest such vector. If the assumption that

Lifespan $\approx a_1$ (Dose of Medicine 1) + a_2 (Dose of Medicine 2)

is good, then w will be close to \widetilde{w} and

$$w \approx a_1 v_1 + a_2 v_2$$

Therefore to find a_1 and a_2 , the researcher should solve the equation $\widetilde{w} = a_1v_1 + a_2v_2$ for a_1 and a_2 from the known quantities v_1 , v_2 , and \widetilde{w} .

Note that v_1 , v_2 and w are vectors in \mathbb{R}^{100} . If 1000 mice were measured, they would be vectors in \mathbb{R}^{1000} instead. Also note that v_1 and v_2 each correspond to one of the two independent variables. If there were fifteen independent variables instead of there would be v_1, \ldots, v_{15} instead of v_1, v_2 .

This is usually notated in a different but helpful way. Let X be a 100×2 matrix whose columns form the data of the independent variables, i.e.,

$$X = \begin{pmatrix} 250 & 90\\ 200 & 100\\ 150 & 150\\ \vdots & \vdots\\ 110 & 170 \end{pmatrix}$$

Let y be a column matrix whose entries are the dependent variable measurements

$$y = \begin{pmatrix} 2\\ 2.5\\ 1.5\\ \vdots\\ 2.7 \end{pmatrix}$$

(so y is what was called w before and X is the matrix whose columns were called v_1 and v_2). Then the approximation $w \approx a_1v_1 + a_2v_2$ can be rewritten

$$y \approx X\beta$$

where

$$\beta = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

You want to find β such that $X\beta$ is the orthogonal projection of y to the span of the columns of X. Therefore you want to find β that minimizes the length of the vector $||y - X\beta||$ as β ranges over all 2×1 matrices. This is the same as finding β that minimizes the length squared: $||y - X\beta||^2$. Some simple multivariable calculus shows that, if $X^T X$ is invertible (and, in practice, it usually is), then

$$\beta = (X^T X)^{-1} X^T y.$$

is the unique such minimizer.