
Given a function on the real numbers, one can often write it as a series of
powers, for example

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · ·

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)nx2n

(2n)!
+ · · ·

In general, the formula is:

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

These series are called Taylor series. In this section, we’ll learn about a differ-
ent kind of series for periodic functions, called Fourier series.

Recall f is periodic with period 2π if f(x + 2π) = f(x). For example,
eix = cos(x) + i sin(x) is periodic with period 2π. Also note that einx = (eix)n

is a power of this function. These functions are called “complex exponentials”.
If f is periodic with period 2π, it can be written as an infinite sum of

complex exponentials:1

f(x) =
∞∑

n=−∞

ane
inx

where the coefficients an can be computed exactly. To compute the coefficients,
note that2∫ 2π

0

f(x)e−imxdx =

∫ 2π

0

∞∑
n=−∞

ane
i(n−m)xdx =

∞∑
n=−∞

an

∫ 2π

0

ei(n−m)xdx

and ∫ 2π

0

ei(n−m)xdx =

{
2π n = m

0 otherwise

so in the infinite sum, only the term corresponding to m is nonzero. Therefore

2πam =

∫ 2π

0

f(x)e−imxdx

1There are some footnotes that should be added here. You can devise functions for which
this sum does not exist or does not converge, but we will not deal with these. For most
practical purposes, the sum here exists. More seriously, if you change f at a finite number of
points, the series on the right does not change. Therefore the series on the right converges
to f except at perhaps a finite number of points. These details are important in the full
study of these series, but will not be very important to us. Just know the use of an “equals”
sign here should be used cautiously. In general, the series converges to the correct values of
f at points where f is continuous.

2Assume here that you can interchange the sum and the integral. This doesn’t work for
all functions, but it works for the functions we’ll care about.
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so

an =
1

2π

∫ 2π

0

f(x)e−inxdx.

Note that this formula also works with integrand bounds −π and π since f is
period of period 2π:

an =
1

2π

∫ π

−π
f(x)e−inxdx.

The series
∑∞

n=−∞ ane
inx is called a Fourier series and the coefficients an

are called Fourier coefficients.
For example, if

f(x) =

{
1 0 ≤ x < π

0 π ≤ x < 2π

and then you translate the graph of f to make it periodic, then

an =
1

2π

∫ 2π

0

f(x)e−inxdx =
1

2π

∫ π

0

e−inxdx

=
1

2π

e−inx

−in

∣∣∣∣π
0

=
1

2π

eiπn − 1

−in
=

(eiπ)n − 1

−2πin
=

(−1)n − 1

−2πin

If n is even, note that this vanishes. This computation only works for n 6= 0,
since in at one point we divided by n. One must deal with the n = 0 case
separately:

a0 =
1

2π

∫ 2π

0

f(x)e−i·0·xdx =
1

2π

∫ 2π

0

f(x)dx =
1

2

Therefore

f(x) =
1

2
+
∑
n odd

−i
πn

einx

You can turn this series into a series involving sines and cosines by splitting it
up into positive and negative parts:

=
1

2
+
∑
n≥1
n odd

−i
πn

einx +
∑
n≤−1
n odd

−i
πn

einx

changing variables n→ −n in the second sum

=
1

2
+
∑
n≥1
n odd

−i
πn

einx +
∑
n≥1
n odd

−i
π(−n)

ei(−n)x

combining the last two summations

=
1

2

∑
n≥1
n odd

−i
πn

(einx − e−inx)
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and using einx = cos(nx) + i sin(nx) and e−inx = cos(nx)− i sin(nx):

=
1

2
+
∑
n≥1
n odd

2

πn
sin(nx).

In this form you can use a computer to graph the partial sums of the series
and visually see that they converge to the appropriate function.

Up to now in class we’ve discussed differential equations involving functions
of a single variable:

df

dx
= f ⇒ f(x) = Cex

and possibly with some initial conditions:

f(0) = 2⇒ f(x) = 2ex.

These sorts of differential equations are called “ordinary differential equa-
tions”. If the function involves more than one variable then the differential
equation is called a “partial differential equation”. For example if u(x, t) is a
function of two variables, then3

∂u

∂t
=
∂2u

∂x2

is a partial differential equation. For the PDEs we’ll be dealing with, it will be
helpful to think of t as a time parameter, and u(x, t) a family of single variable
functions varying in time. With this notion, an initial condition is of the form
u(x, 0) = f(x). Therefore one might want to solve the differential equation
with initial condition:

∂u

∂t
=
∂2u

∂x2

u(x, 0) = f(x)

for some given fixed single variable function f(x). This particular partial dif-
ferential equation is called the heat equation. If u represents the temperature
at position x and time t, then its behavior follows this equation. f represents
the initial temperature distribution at time t = 04

In this course, we’ll just focus on the case where u (and hence f) is periodic
(with period 2π) in its x coordinate: u(x + 2π, t) = u(x, t). Then one way to

3Here ∂u
∂t means “differentiate u with respect to t, treating all other variables as con-

stants.” For example if u(x, t) = tx2 + cos(x), then ∂u
∂t = x2.

4Strictly speaking, since we live in three-dimensional space, the real heat equation is

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

and the “heat equation” given here is its restriction to a single direction.
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solve the heat equation is to write down a Fourier series for u at each time t.
Since u is different at each time t, the Fourier coefficients depend on t:

u(x, t) =
∞∑
−∞

an(t)einx

Then
∂u

∂t
=
∞∑
−∞

a′n(t)einx

∂2u

∂x2
=
∞∑
−∞

an(t)(in)2einx

so, plugging these into the heat equation, one gets

∂u

∂t
=
∂2u

∂x2
⇒

∞∑
−∞

a′n(t)einx =
∞∑
−∞

an(t)(in)2einx

and equating the coefficients of the complex exponentials on each side implies
that, for each n,

a′n(t) = −n2an(t)

Therefore an(t) = Ce−n
2t for some constant C. Plugging in t = 0 shows that

C = an(0), so an(t) = an(0)e−n
2t so that

u(x, t) =
∞∑
−∞

an(0)e−n
2teinx.

Therefore

f(x) = u(x, 0) =
∞∑
−∞

an(0)einx

so an(0) is the nth Fourier coefficient of f .
For example, if f(x) is the same function as earlier:

f(x) =

{
1 0 ≤ x < π

0 π ≤ x < 2π

(translated to be 2π-periodic) then

an(0) =


1
2

n = 0
−i
πn

n odd

0 otherwise

so that

u(x, t) =
1

2
+
∑
n odd

−i
πn

e−n
2teinx
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As before you can write this in terms of sines and cosines if you so choose:

u(x, t) =
1

2
+
∑
n≥1
n odd

2

πn
e−n

2t sin(nx)

Another important PDE is the wave equation:

∂2u

∂t2
=
∂2u

∂x2

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

Since there are two time derivatives in the differential equation, it turns out
that you have to specify initial conditions both for u and for its time derivative.
Again, we’ll only solve this equation in the case where u is periodic in the x-
direction: u(x+ 2π, t) = u(x, t). In this case, f and g are periodic and so they
admit Fourier series:

f(x) =
∞∑

n=∞

bne
inx

g(x) =
∞∑

n=∞

cne
inx

for some constants bn and cn. To solve the wave equation, as before write out
a Fourier series for u at each time t:

u(x, t) =
∞∑
−∞

an(t)einx

Then
∂2u

∂t2
=
∞∑
−∞

a′′n(t)einx

∂2u

∂x2
=
∞∑
−∞

an(t)(in)2einx

and, plugging these into the wave equation shows that

a′′n(t) = −n2an(t)⇒ an(t) = Aeint +Be−int

for some constants A and B. Furthermore,

a′n(t) = inAeint − inBe−int

so that
an(0) = A+B
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a′n(0)

in
= A−B

so that

A =
1

2

(
an(0) +

a′n(0)

in

)
B =

1

2

(
an(0)− a′n(0)

in

)
But since u(x, 0) = f(x), then an(0) = bn. And since ∂u

∂t
(x, 0) = g(x), then

a′n(0) = cn. Therefore

A =
1

2

(
bn +

cn
in

)
B =

1

2

(
bn −

cn
in

)
so that

an(t) =
1

2

(
bn +

cn
in

)
eint +

1

2

(
bn −

cn
in

)
e−int

= bn cos(nt) +
cn
n

sin(nt)

Note that when n = 0, this analysis doesn’t apply since I divided by 0. There-
fore you should treat that case separately:

a′′0(t) = 0⇒ a0(t) = A+Bt

where here A = a0(0) and B = a′0(0). Therefore

u(x, t) = b0 + c0t+
∞∑

n=−∞
n6=0

(
bn cos(nt) +

cn
n

sin(nt)
)
einx

Given f and g, you can compute the coefficients bn and cn, and hence compute
the solution u(x, t). For example, if f is as before:

f(x) =

{
1 0 ≤ x < π

0 π ≤ x < 2π

(extended to the whole real line in a way that makes it 2π periodic) and
g(x) = 0, then

bn =


1
2

n = 0
−i
πn

n odd

0 otherwise

cn = 0

so that

u(x, t) =
1

2
+
∑
n odd

−i
πn

cos(nt)einx.
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As usual, this can be written in terms of sines and cosines with the usual trick
of splitting the sum into positive n and negative n, then changing variables
n→ −n on the negative part:

u(x, t) =
1

2
+
∑
n odd

2

πn
cos(nt) sin(nx)

In the solution of the heat equation, the nth Fourier coefficient slowly
decreases in size as time increases. In the solution to the wave equation, it
oscillates back and forth in magnitude.

Here’s a simpler partial differential equation, the transport equation:

∂u

∂t
=
∂u

∂x

u(x, 0) = f(x)

Again, suppose that u(x+ 2π, t) = u(x, t). In particular f is periodic so

f(x) =
∞∑

n=−∞

bne
inx

for some coefficients bn. You can write u(x, t) in terms of the coefficients bn
by expanding u(x, t) as a Fourier series at each time t:

u(x, t) =
∞∑

n=−∞

an(t)einx

plugging this expression for u into both sides of the transport equation:

∂u

∂t
=

∞∑
n=−∞

a′n(t)einx

∂u

∂x
=

∞∑
n=−∞

inan(t)einx

setting the two sides equal to one another

∞∑
n=−∞

a′n(t)einx =
∞∑

n=−∞

inan(t)einx

equating coefficients
a′n(t) = inan(t)

and solving
an(t) = an(0)eint = bne

int
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Therefore

u(x, t) =
∞∑

n=−∞

bne
inteinx

This is the solution. In fact, you can simplify things a bit:

u(x, t) =
∞∑

n=−∞

bne
in(x+t) = f(x+ t)

so the solution to the transport equation is just a family of shifted copies of f .
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