
Math 54 Final Practice 2 Solutions

1. There are many ways to solve this, one of which is row reduction(
1 2 3
1 −1 0

)
→
(

1 0 1
0 1 1

)
so only solution is x = 1, y = 1.

2. The columns span the image and in this case the columns are linearly
independent, so they form a basis. Therefore a basis for the image is1

0
0

 ,

0
1
0


The kernel is 1-dimensional, so a basis for the kernel consists of a single
nonzero vector. Since the third column is 0, then (0, 0, 1) is in the kernel,
and so gives a basis for the kernel.

3.

det

(
−13− λ −10

15 12− λ

)
= (λ+ 3)(λ− 2)

so the eigenvalues are −3 and 2. If λ = −3, an eigenvector is a vector in
the kernel of (

−10 −10
15 15

)
one of which is (1,−1). If λ = 2, an eigenvector is a vector in the kernel
of (

−15 −10
15 10

)
an example of which is (−2, 3). Therefore if

P =

(
1 −2
−1 3

)
and

D =

(
−3 0
0 2

)
then

A = PDP−1

and hence
An = PDnP−1

Note that

P−1 =

(
3 2
1 1

)
so that

PDnP−1 =

(
3 · (−3)n − 2 · 2n 2 · (−3)n − 2 · 2n
−3 · (−3)n + 3 · 2n −2 · (−3)n + 3 · 2n

)
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4. A = I and B = −I works

5. Consider any matrix like 1 ∗ ∗
0 1 ∗
0 0 1


where the ∗s are replaced by numbers. There are infinitely many of these
and their only eigenvalue is 1.

6. The lengths of the sides of the triangle are the lengths of the vectors that
point for one vertex to another.2

0
1

−
3

2
2

 =

−1
2
1


and the length of this vector is

√
6.2

0
1

−
 3
−1
−1

 =

−1
1
2


and the length of this vector is

√
6.3

2
2

−
 3
−1
−1

 =

0
3
3


and the length of this vector is 3

√
2. Therefore the side lengths of the

triangle are
√

6,
√

6, and 3
√

2.

7. (updated 8/14) Vectors in P are the same vectors in the kernel of(
1 1 1 0
0 1 1 1

)
.

By row reduction, these are vectors of the form
w

−z − w
z
w


for some values of w and z. Therefore

v1 =


0
−1
1
0

 , v2 =


1
−1
0
1


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forms a basis of P . Apply Gram-Schmidt to (v1, v2) as follows:

u1 =
1

‖v1‖
v1 =


0

−1/
√

2

1/
√

2
0



w2 = v2 − (v2 · u1)u1 =


1
−1/2
−1/2

1



u2 =
1

‖w2‖
w2 =

2√
10


1
−1/2
−1/2

1


(u1, u2) is an orthonormal basis of P .

dim(P ) = 2 so dim(P⊥) = dim(R4) − dim(P ) = 2. Therefore a basis
of P⊥ consists of two vectors in P⊥ that do not lie on the same line.
Vectors in P⊥ are vectors (a, b, c, d) such that ax + by + cz + dw = 0
for all (x, y, z, w) in P . Vectors in P are vectors (x, y, z, w) such that
x + y + z = 0 and y + z + w = 0. Therefore you want to find two
vectors in (a, b, c, d) such that ax+ by+ cz+ dw = 0 if x+ y+ z = 0 and
y+ z+w = 0. Two clear choices are v3 = (1, 1, 1, 0) and v4 = (0, 1, 1, 1).

Apply Gram-Schmidt to (v3, v4) as follows:

u3 =
v3
‖v3‖

=
1√
3


1
1
1
0



w4 = v4 − (v4 · u3)u3 =


−2/3
1/3
1/3
1



u4 =
w4

‖w4‖
=

3√
15


−2/3
1/3
1/3
1


Then (u3, u4) forms an orthonormal basis of P⊥.

8. {v1, v2, v3} is linearly independent if and only if the matrix whose columns
are v1, v2, and v3 is injective. If this matrix is square, it’s injective if and
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only if it’s invertible. Thereforea1
0

 ,

0
a
1

 ,

1
0
a


is a linearly independent set of vectors if and only if the matrixa 0 1

1 a 0
0 1 a


is invertible, which occurs if and only if its determinant is nonzero. Its
determinant is a3+1, so if a = −1 then the vectors are linearly dependent
and otherwise they’re linearly independent. Therefore if a 6= −1 they’re
linearly independent and if a 6= −1 they also span.

9. Recall that the closest point on V to (1, 0, 0, 0) is the orthogonal projec-
tion of (1, 0, 0, 0) onto V . An orthonormal basis of V is

u1 =


1/
√

2

−1/
√

2
0
0

 , u2 =


0
0

1/
√

2

−1/
√

2


and the orthogonal projection of e1 = (1, 0, 0, 0) onto V is

(e1 · u1)u1 + (e2 · u2)u2 =


1/2
−1/2

0
0


10. Row reduce 1 1 0 1 0 0

1 1 1 0 1 0
0 1 1 0 0 1

→
 1 0 0 0 1 −1

0 1 0 1 −1 1
0 0 1 −1 1 0


so the inverse is  0 1 −1

1 −1 1
−1 1 0


11. (a) The unit vector in the direction of y is

u = (1/
√
n, . . . , 1/

√
n).

Note that

x · u =

{
0 n even

1/
√
n n odd

The projection of x onto the span of y is (x·u)u, i.e., (1/n, 1/n, 1/n, . . . , 1/n)
if n is odd and 0 otherwise.
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(b) The vectors in the orthogonal complement satisfy

x1 + x2 + x3 + · · · = 0

x1 − x2 + x3 − x4 + · · · = 0

and this system can be row-reduced into the simpler system

x1 + x3 + x5 + · · · = 0

x2 + x4 + x6 + · · · = 0

so the vectors in the orthogonal complement of x and y are of the
form 

−x3 − x5 − x7 − · · ·
−x4 − x6 − x8 − · · ·

x3
x4
x5
...


so a basis consists of 

−1
0
1
0
0
0
0
0
...


,



−1
0
0
0
1
0
0
0
...


,



−1
0
0
0
0
0
1
0
...


and 

0
−1
0
1
0
0
0
0
...


,



0
−1
0
0
0
1
0
0
...


,



0
−1
0
0
0
0
0
1
...


taken together.

12. The plane orthogonal to (1, 0, 1) is x+ z = 0. The plane parallel to this
which passes through (0, 1, 1) is the plane x+ z = 1.
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13. (updated 8/14) Yes: (
1 0
1 0

)
14. removed

15. Since u(x, t) is periodic in x with period 2π, you can write

u(x, t) =
∞∑

n=−∞

an(t)einx

Plugging this into the differential equation gives

ia′n(t) = −n2an(t)

which has solutions
an(t) = an(0)ein

2t.

If u(x, 0) =
∑∞

n=−∞ bne
inx, then

bn =
1

2π

∫ 2π

0

f(x)e−inx =
1

2π

e−inx

−in

∣∣∣∣π
x=0

=
1

2π

(−1)n − 1

−in

⇒ u(x, t) =
1

2
+
∑
n6=0

1

2π

(
(−1)n − 1

−in

)
ein

2teinx

16. If

f(x) =
∞∑

n=−∞

ane
inx

then if n 6= 0,

an =
1

2π

∫ 2π

0

f(x)e−inxdx

=
1

2π

∫ π

0

2xeinxdx =
2

2π

(
xe−inx

−in

∣∣∣∣π
0

− e−inx

(−in)2

∣∣∣∣π
0

)
=

1

πn

(
iπ(−1)n +

(
(−1)n − 1

n

))
If n = 0, then

a0 =
1

2π

∫ 2π

0

f(x)dx =
π

2

so

f(x) =
π

2
+
∑
n6=0

1

πn

(
iπ(−1)n +

(
(−1)n − 1

n

))
einx
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