
Math 54 Final Practice 1 Solutions

1. Let P be the plane x+ y + z = 0. A vector (a, b, c) in P⊥ must be such
that (a, b, c) · (x, y, z) = 0 for all vectors (x, y, z) in P . Therefore you
want a vector (a, b, c) such that ax+by+cz = 0 if x+y+z+0. One such
vector is (1, 1, 1). Since dim(P ) = 2 and dimR3 = 3, then dimP⊥ = 1
so (1, 1, 1) is a basis of P⊥.

2. A point (x, y, z) in L satisfiesxy
z

 =

 t+ 2
−t+ 1
t


for some t. A point (x, y, z) in P satisfies −x+y+3z = 8. A point in both
P and L satisfies both of these conditions, so −(t+2)+(−t+1)+3z = 8.
This implies that t = 9. Therefore11

−8
9


is the intersection of L and P .

3. Solving Ax = y for x involves row reducing 1 2 1 2
2 1 0 0
0 1 0 2

→
 1 0 0 −1

0 1 0 2
0 0 1 −1


so the only solution is (−1, 2,−1).

4. There should be six vectors in the basis of V . For points in V you can
write x1 and x2 in terms of the other variables. Specifically, the points
in V are the points of the form

−x3 − x5 − x7
−x4 − x6 − x8

x3
x4
x5
x6
x7
x8


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= x3



−1
0
1
0
0
0
0
0


+x4



0
−1
0
1
0

0
0


+x5



−1
0
0
0
1
0
0
0


+x6



0
−1
0
0
0
1
0
0


+x7



−1
0
0
0
0
0
1
0


+x8



0
−1
0
0
0
0
0
1


so a basis of V is

−1
0
1
0
0
0
0
0


,



0
−1
0
1
0

0
0


,



−1
0
0
0
1
0
0
0


,



0
−1
0
0
0
1
0
0


,



−1
0
0
0
0
0
1
0


,



0
−1
0
0
0
0
0
1


5. (updated 8/14)

det

9− λ −6 −10
0 1− λ 0
8 −6 −9− λ

 = −(λ− 1)2(λ+ 1)

Therefore the eigenvalues are 1 and−1. The eigenvectors with eigenvalue
1 are the nonzero vectors in

ker

9− 1 −6 −10
0 1− 1 0
8 −6 −9− 1

 =

8 −6 −10
0 0 0
8 −6 −10


and these are the vectors (x, y, z) such that 8x− 6y − 10z = 0. A basis
for this plane is (3, 4, 0) and (0, 5,−3). The eigenvectors with eigenvalue
−1 are the nonzero vectors in

ker

9− (−1) −6 −10
0 1− (−1) 0
8 −6 −9− (−1)

 =

10 −6 −10
0 2 0
8 −6 −8


and (1, 0, 1) is one such vector (you can find this by row-reducing, for
example). Then 3

4
0

 ,

 0
5
−3

 ,

1
0
1


is an eigenbasis (it is not the only eigenbasis).
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6. You want to find the times t when these two vectors point along the
same direction or opposite each other. Therefore it’s enough to find the
times t when their normalizations(

sin(t)
cos(t)

)
,

(
sin(t)
− cos(t)

)
are equal or opposite. Therefore you want to find the times t when(

sin(t)
cos(t)

)
= ±

(
sin(t)
− cos(t)

)
and these times are when cos(t) = 0 or sin(t) = 0. These are t = πn

2

where n is any integer.

7. (no question on the final is going to be this long) Much like the Fibonacci
problem we tried in class, the matrix

A =

 0 1 0
0 0 1
−2 1 2


is such that

A

an−3an−2
an−1

 =

 an−2
an−1

2an−1 + an−2 − 2an−3

 =

an−2an−1
an


Iterating this, one sees that

An−2

a0a1
a2

 =

an−2an−1
an


Therefore to compute an one must compute the 3rd component of

An−2

a0a1
a2

 = An−2

0
1
2


To find this one must compute

An−2

and to compute that one must write

A = PDP−1

where D is diagonal, so that An−2 = PDn−2P−1. To do this, P is the
matrix whose columns are the eigenvectors of A and D is the matrix
whose diagonal entries are the corresponding eigenvalues.
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Since

det

−λ 1 0
0 −λ 1
−2 1 2− λ

 = −λ3 + 2λ2 + λ− 2 = (λ− 2)(−λ2 + 1)

the eigenvalues of A are 2, 1, and −1. Therefore

D =

2 0 0
0 1 0
0 0 −1

 .

An eigenvector with eigenvalue 2 is a nonzero vector in the kernel of−2 1 0
0 −2 1
−2 1 0


of which one is 1

2
4


and an eigenvector with eigenvalue 1 is a nonzero vector in the kernel of−1 1 0

0 −1 1
−2 1 1


of which one is 1

1
1


and an eigenvector with eigenvalue −1 is a nonzero vector in the kernel
of  1 1 0

0 1 1
−2 1 3


of which one is  1

−1
1


Therefore P can be taken to be

P =

1 1 1
2 1 −1
4 1 1


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P−1 can be computed by row-reducing 1 1 1 1 0 0
2 1 −1 0 1 0
4 1 1 0 0 1

→
 1 0 0 −1/3 0 1/3

0 1 0 1 1/2 −1/2
0 0 1 1/3 −1/2 1/6


so that

P−1 =
1

6

−2 0 2
6 3 −3
2 −3 1


and

An−2

0
1
2

 =

1 1 1
2 1 −1
4 1 1

2n−2 0 0
0 1 0
0 0 (−1)n−2

 1

6

−2 0 2
6 3 −3
2 −3 1

0
1
2


and the third component of this is

16 · 2n−2 − 3− (−1)n−2

6

8. The image is the span of the columns. Since

det

1 0 1
0 1 0
0 1 1

 = 1 6= 0

the first three columns are linearly independent. Since you can’t have
three linearly independent vectors in a 0-, 1-, or 2-dimensional subspace
of R3 then these three columns span all of R3. Hence the columns of
the original 3× 5 matrix span all of R3. Therefore the dimension of the
image is 3 and the dimension of the kernel must be 2.

9. There are lots of examples. Perhaps the easiest are diagonal matrices.
The standard basis is an eigenbasis for the standard basis, and it’s also
orthonormal. Therefore the eigendecomposition A = PDP−1 is the same
as the singular decomposition A = UΣV T where U = V = P and Σ = D.

10. The vectors (0, 1, 0) and (1, 0, 1) are already orthogonal, so applying
Gram-Schmidt gives u1 = (0, 1, 0) and u2 = (1/

√
2, 0, 1/

√
2). Therefore

the orthogonal projection of (1, 1, 2) onto the plane spanned by u1 and
u2 is 1

1
2

 · u1
u1 +

1
1
2

 · u2
u2 =

3/2
1

3/2


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11. A vector in V1 can be written

a


1
0
1
0
0

+ b


0
1
1
0
1


for some a and b and a vector in V2 can be written

c


0
1
0
1
0

+ d


1
1
1
0
0

+ e


1
0
0
1
1


for some c, d, and e, so a vector in both satisfies

a


1
0
1
0
0

+ b


0
1
1
0
1

 = c


0
1
0
1
0

+ d


1
1
1
0
0

+ e


1
0
0
1
1


i.e., 

a = d+ e

b = c+ d

a+ b = d

c+ e = 0

b = e

and from these equations it’s not hard to see that the only solution of
a = b = c = d = e = 0. For example, the last two equations say that
b = e and c = −e. Then the first and third say that a + e = d and
a−e = e so that a = d and e = 0. Then b = c = 0. The second equation
then implies that a = d = 0. Therefore the intersection of V1 and V2 is
the point (0, 0, 0, 0, 0).

12. removed

13. (a) linearly dependent

(b) linearly dependent

(c) linearly independent

14. To find the homogeneous solution, guess f(x) = erx so that r2 +2r−3 =
0. Therefore r = −3 or r = 1. The homogeneous solution is

f(x) = C1e
−3x + C2e

x
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For the paticular solution, guess f(x) = Ax+B so that

2(Ax+B)′ − 3(Ax+B) = x+ 1⇒ 2A− 3Ax− 3B = x+ 1

Equating coefficients on each side implies that A = −1
3

and B = −5
9

so
the general solution is

−1

3
x− 5

9
+ C1e

−3x + C2e
x

f(0) = 1⇒ −5

9
+ C1 + C2 = 1

f ′(0) = 1⇒ −1

3
− 3C1 + C2 = 1

⇒ C1 =
1

18
, C2 =

3

2

Therefore the solution is

−1

3
x− 5

9
+

1

18
e−3x +

3

2
ex

15. Write u(x, t) =
∑∞

n=−∞ an(t)einx. Since u(x, 0) = 2e2ix + 2e−2ix then

an(0) =

{
2 if n = ±2

0 otherwise
.

The coefficients an(t) satisfy

an(t) = −n2an(0)

so
u(x, t) = 2e2ixe−4t + 2e−2ixe−4t

16. On the interval [0, 2π):

f(x) =
eix/2 + e−ix/2

2

If f(x) =
∑∞

n=−∞ ane
inx then

an =
1

2π

∫ 2π

0

(
eix/2 + e−ix/2

2

)
e−inxdx

=
1

2π

∫ 2π

0

ei(
1
2
−n)x + e−i(

1
2
+n)x

2
dx

=
1

4π

 ei(
1
2
−n)x

i
(
1
2
− n

)∣∣∣∣∣
2π

0

+
e−i(

1
2
+n)x

−i
(
1
2

+ n
)∣∣∣∣∣

2π

0


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=
1

2πi

[
1

1
2

+ n
− 1

1
2
− n

]
=

1

2πi

−2n
1
4
− n2

so

f(x) =
∞∑

n=−∞

1

2πi

−2n
1
4
− n2

einx
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