The Fibonacci numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, 55,...

are obtained by starting with a; = 1 and ay = 1, then recursively defining
ap = Qp_1 + Gnp_o. It will help some of the later calculations to set ag = 0.
This is consistent since the recursion then defines ay to be 0 +1 = 1.

The recurrence relation for the Fibonacci sequence can be encoded in a

matrix:
0 1 Ap—2 o ap—1 o Ap—1
11 Qp—1 N Gp-1 + Qp_2 N Gp,
In particular, one can compute the Fibonacci numbers by applying this matrix
to (CLQ,CL1> = (07 1)
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Thus if a,, is the nth Fibonacci number, then
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One can compute a formula for ((1) 1) in terms of its eigenvalues.
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Its eigenvalues are the roots of
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det ( . 1- )\) =0

M-A=-1=0
SO A = %5 Let ¢ = %5 The other root turns out to be —1/¢, since

—2/(1+V6) = (1-V5)/2.
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where P is a matrix whose columns are eigenvectors of 1 1) To determine
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P one has to compute eigenvectors. These are elements in kernel of
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respectively. Since ¢? —¢—1 =0, then 1 —¢ = —%. Therefore the first matrix
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and so (1,¢) is a vector in the kernel. Similarly, 1 + é = —¢, so the second

matrix is
1/¢p 1
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and (1,—1/¢) is a vector in the kernel. Therefore an eigenbasis is
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In fact, ¢ + é = /5, so:

then
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['herefore
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so that



Note that this is
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the second term of which has absolute value less than 1/2. Therefore another
way to compute a,, is to compute the integer closest to fs/—%



