
The number i is a number such that i2 = −1. Real numbers always square
to positive numbers, so i has to be combined with the real numbers “by hand”.
Suppose you combined the real numbers with this new number i. Then you’d
need to allow i to be added to real numbers. Hence you should also allow
numbers like 5 + i. You should also allow yourself to multiply it by real
numbers, so you should also allows numbers like 2i, which of course is also
equal to i + i. Note that i2 = −1 so i3 = −i, i4 = 1, i5 = i, i6 = −1 etc. The
pattern repeats every four powers, so i4n = 1.

The resulting set of numbers is called the set of “complex numbers”. These
are numbers of the form a+bi where a and b are real numbers. You manipulate
complex numbers as if i is a variable like “x” or “y”:

2(5 + i) = 10 + 2i

0i = 0

(5 + 2i)(1− i) = 5 + 2i− 5i− 2i2 = 5 + 2i− 5i− 2(−1) = 7− 3i

Just as R denotes the set of real numbers, C denotes the set of complex
numbers.

Because complex number depend on two real numbers, you can represent
a + bi as the pair (a, b) and draw it on the cartesian plane. For example,
5 + 2i sits at the point (5, 2) and the real numbers form the x-axis. The y-axis
consists of the complex numbers of the form ai where a is real. The numbers on
the y-axis are called “imaginary” numbers, though that’s just a name. They’re
no less figments of our imagination than, say, negative numbers.

There’s a notion of “absolute value” for real numbers. Namely, |x| is the
distance between x and 0. Similarly let |a+ bi| be the distance between a+ bi
and 0. By the pythagorean theorem, this is

√
a2 + b2. If z = a + bi, let

z = a − bi. z is called the “complex conjugate” of z. It is not hard to check
that, if z and w are complex numbers, zw = zw and |z| =

√
zz. Therefore

|zw| = |z||w| and zz = |z|2 is always real.
You can divide complex numbers as well as add, subtract, and multiply as

well:
1 + i

2− i
To get this in the form a + bi, multiply top and bottom by the complex
conjugate of the denominator
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The complex numbers z with |z| = 1 play a special role. These are called
the unit complex numbers. Since these lie on the unit circle, they can written as
cos θ+i sin θ, where θ is the angle measured counterclockwise from the positive
x-axis. In fact, you can write unit complex numbers in a more efficient way.
The power series expressions for ex, cos(x), and sin(x) are all very similar:
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x2
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cos(x) = 1− x2
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+
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+ · · ·

sin(x) = x− x3

3!
+
x5

5!
+ · · ·

It would be true that ex = cos(x) + sin(x) if it weren’t for those pesky minus
signs. This can be remedied by placing i in the appropriate places (note that
i3 = −i, i4 = 1, i5 = i, etc):

eix = 1 + ix− x2
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so
eix = cos(x) + i sin(x)

This miraculous formula says that cos(x) and sin(x) can be packaged together
using the exponential function.

Therefore any unit complex number is eiθ for some angle θ. In fact, if z
is a nonzero complex number then |z/|z|| = 1, so z/|z| = eiθ so z = |z|eiθ for
some angle θ. For example

1 + i =
√

2(cos(π/4) + i sin(π/4)) =
√

2eiπ/4.

So all complex numbers can be represented as sums a+bi. All nonzero complex
numbers can be alternatively represented as products reiθ.

Multiplying a complex number by a real number scales it by that real
number: 5(a + bi) = 5a + 5bi. Since ex+y = exey, it follows that (reiθ)eiϕ =
rei(θ+ϕ). Thus multiplying a complex number by a unit complex number eiϕ

rotates it counterclockwise by θ.
Incidentally, most trig identities follow easily from the equation eiθ =

cos(θ) + i sin(θ). For example,

cos(θ+ϕ)+i sin(θ+ϕ) = ei(θ+ϕ) = eiθeiφ = (cos(θ)+i sin(θ))(cos(ϕ)+i sin(ϕ))

= cos(θ) cos(ϕ) + i sin(θ) cos(ϕ) + i cos(θ) sin(ϕ)− sin(θ) sin(ϕ)

= (cos(θ) cos(ϕ)− sin(θ) sin(ϕ)) + i(sin(θ) cos(ϕ) + cos(θ) sin(ϕ))

so
cos(θ + ϕ) = cos(θ) cos(ϕ)− sin(θ) sin(ϕ)

sin(θ + ϕ) = sin(θ) cos(ϕ) + cos(θ) sin(ϕ)

The quadratic equation

ax2 + bx+ c = 0

has two solutions

x =
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√
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If b2−4ac is negative, then these two solutions are not real, but instead involve
i, for example

x2 + x+ 1

has solutions

x =
−1±

√
−3

2
=
−1±

√
(−1)3

2
=
−1±

√
−1
√

3

2
=
−1± i

√
3

2

In fact all polynomial equations, in all degrees, have solutions over the complex
numbers. And some polynomial equations have more solutions than just the
real solutions you’re already familiar with.

For example, the equation x3 − 1 = 0 has one real solution, namely 1.
But it has two other complex solutions. In fact it is not hard to see that

these solutions must be the points 1/3 of the way around the unit circle and
2/3 of the way around the unit circle. These are the points e2πi/3 and e4πi/3.
For example (e2πi/3)3 = e2πi/3e2πi/3e2πi/3 = e2πi/3+2πi/3+2πi/3 = e2πi. And e2πi

is the point an angle of 2π around the unit the circle, so e2πi = 1. One could
also obtain these other solutions by factoring

x3 − 1 = (x− 1)(x2 + x+ 1)

so if x3 − 1 = 0 then x = 1 or x2 + x+ 1 = 0, i.e.,

x =
−1± i
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i are the two points e2πi/3 and e4πi/3 written in the form a+ bi.
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