
1 Some Basics

Sets and Lists. For us, a set will be informally thought of a collection of
objects. For example, the set {0, 1} contains the numbers 0 and 1, the set
R is the set of real numbers, and the set C is the set of complex numbers.
A finite set containing objects x1, . . . , xn will be denoted {x1, . . . , xn}. The
notation (x1, . . . , xn) will denote the set {x1, . . . , xn} plus the ordering x1 first,
then x2, then x3, etc. For example, {x1, x2} = {x2, x1} but (x1, x2) 6= (x2, x1).
(x1, . . . , xn) will be called a “list” or “n-tuple” instead of a “set”.

Given sets X and Y , a function f : X → Y is an assignment of an element
of Y to every element in X. The words “map” and “transformation” are
synonyms for “function”. If f : X → Y is a function, then the statement
x 7→ y is read “x is mapped to y” and means “f(x) = y”.

The set X × Y is defined to be the set of lists (x, y) where x ∈ X and
y ∈ Y .

Symbols and Terminology. It is helpful to recall some common terminology
about proofs. A implies B means that if A is true, then B is true. For example,
in the real numbers, x > 1 implies that x > 0. The symbol ∀ means “for
all”, the symbol ∃ means “there exists”, the symbol ∈ means “in” of “is an
element of”, and the letters s.t. mean “such that”. For example, the sentence
“for each real number, there exists a larger real number” might be written
∀x ∈ R, ∃y ∈ R s.t. y > x.

Boolean Operations. When a mathematician says “A or B is true”, they
mean that either A is true, or B is true, or both A and B are true. This
somewhat contradicts the common everyday usage of “or”, which excludes the
latter case. When a mathematician says “A and B are true”, they mean that
both A and B are true.

Negation. Given a statement A, its negation, denoted ¬A, is the statement
which is true if A is false and false if A is true. For example, the negation of
the statement “the sun will rise tomorrow” is the statement “the sun will not
rise tomorrow”. The negation of the statement “P is true ∀x” is “∃x such that
P is false”. For example, the negation of “all apples are red” is “there exists an
apple that is not red.” Similarly, the negation of “∃x such that P is true” is “P
is false ∀x”. Another example: the negation of the statement“there exists an
even prime number” is “all prime numbers are odd”. Negation flips “and” and
“or”. Namely, ¬(A and B) = (¬A or ¬B) and ¬(A or B) = (¬A and ¬B).
For example, the negation of “p is prime and p is bigger than 2” is “p is not
prime or p is less than or equal to 2”.

The Contrapositive. If A implies B, then the negation of B implies the
negation of A. For if A being true implies that B is true, then if B is false then
A cannot be true hence must be false. If A implies B, then the (true) statement
“¬B implies ¬A” is called “the contrapositive”. Suppose you wanted to prove
that “p is prime and p is bigger than 2 implies that p is odd”. You could
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instead prove the contrapositive: “p is even implies that p is not prime or p
is at most 2.” This second statement might be easier to reason with, as even
numbers are defined to be those divisible by 2.

2 Vector Spaces

Definition 1 (Informal). A vector space is a set V for which sums of elements
are defined, as well as multiples of elements.

So if v, w ∈ V , then v + w is also in V , as is 5v, as is 3v, as is 3.14v, as is
5v + 3w.

Example 2. A good example to keep in mind is the space of real-valued
functions on a set X. If f and g are functions then so are f + g and so is
3.14f and so is 5f + 3g. In case it is not clear, (f + g)(x) := f(x) + g(x) and
(cf)(x) := cf(x).

You can also multiply functions together, but multiplication of elements is
not required as part of a vector space.

Example 3. A simpler example is the set of lists of n real numbers:

(a1, . . . , an), ai ∈ R.

For example, take n = 2. Then

(a1, a2) + (b1, b2) := (a1 + a2, b1 + b2)

and
5(a1, a2) := (5a1, 5a2).

Definition 4. Given V and vectors v1, . . . , vn ∈ V , the element

a1v1 + · · ·+ anvn

is called a “linear combination” of the vis.

Remark 5. A linear combination is a sum with finitely many terms.

Definition 6. (Formal) A vector space V over R is a set together with a
function V × V → V and a function R× V → V generally denoted

(v, w) 7→ v + w, v, w ∈ V

(c, v) 7→ cv, c ∈ R, v ∈ V

that satisfy
v + w = w + v

(v + w) + u = v + (w + u)
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∃0 ∈ V such that 0 + v = v

∀v ∈ V, ∃ − v ∈ V such that v + (−v) = 0

1v = v

a(bv) = (ab)v

(a+ b)(v + w) = av + aw + bv + bw.

This axiomatizes the first informal definition of “a set where you can add
things together and also multiply things by numbers.” Of course there are
different collections of “numbers.” Here I chose the real numbers and I called
V a “vector space over R.” One could also replace the real numbers by the
complex numbers and get the definition for a “vector space over C.” I will use
F to denote either R or C.

Vector Spaces Over Z?. These notes concern themselves with vector spaces
over R and C. One could also replace R by the integers Z. For whatever
reason, a “vector space over Z” is not called a vector space but rather is called
a “module over Z.” The reader may take this fastidiousness of language as an
idiosyncrisy of mathematics. Modules over Z, however, turn out to be quite
different from vector spaces over R and C, justifying both the differentiation
in terminology and their absence from these notes.

Proposition 7. Here are some properties of vector spaces that can be deduced
from the axioms.

• 0v = 0

• For each v ∈ V there exists a unique additive inverse w such that v+w =
0

• (−1)v = −v

Proof. 0v = (0 + 0)v = 0v + 0v. Adding −0v to each side shows that 0v = 0.
The existence of an additive inverse is one of the axioms of a vector space.

To show that the additive inverse is unique, let w be an additive inverse to v,
so that v+w = 0. Add −v to both sides so that v+w+ (−v) = −v and since
v + (−v) = 0 then w = −v.

0 = 0v = (1+(−1))v = 1v+(−1)v = v+(−1)v so that (−1)v is an additive
inverse to v. Because the additive inverse is unique, it must be −v.

Definition 8. The set of lists of n numbers in F, (a1, . . . , an) is called Fn.
Addition and scalar multiplication are defined componentwise:

(a1, . . . , an) + (b1, . . . , bn) := (a1 + b1, . . . , an + bn)

c(a1, . . . , an) := (ca1, . . . , can).

Definition 9. Elements of a vector space V are called “vectors.” The element
0 ∈ V is often called “the zero vector” or, more simply, “zero”.
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Convention. For conventional reasons, vectors in Fn are often denoted ver-
tically:

(a1, . . . , an) =

a1...
an

 .

Example 10. The vector

(
a1
a2

)
in R2 can be represented by an arrow drawn

in the Cartesian plane from the point (0, 0) to the point (a1, a2). Addition
in R2 corresponds to appending one arrow onto the end of the other. The
property v + w = w + v corresponds, geometrically, to a parallelogram. The
zero vector is the arrow pointing from (0, 0) to itself.

Definition 11. A finite collection of vectors v1, . . . vn ∈ V is said to be linearly
dependent if there exists a nonzero element (a1, . . . , an) ∈ Fn such that a1v1 +
· · ·+ anvn = 0.

Note that the ais in the above definition cannot be all equal to 0.

Example 12. The vectors (
1
2

)
,

(
−1
1

)
,

(
0
6

)
are linearly dependent because

−2

(
1
2

)
− 2

(
−1
1

)
+

(
0
6

)
=

(
0
0

)
.

Example 13. The vectors (
1
2

)
,

(
0
1

)
are not linearly dependent because if

a1

(
1
2

)
+ a2

(
0
1

)
=

(
0
0

)
then (

a1
2a1 + a2

)
=

(
0
0

)
which implies that a1 = 0 and 2a1 + a2 = 0 which implies a1 = a2 = 0.

Definition 14. An infinite collection of vectors v1, v2, . . . in V is said to be
linearly dependent if it contains a finite linearly dependent subset.

Definition 15. A collection of vectors called linearly independent if they are
not linearly dependent.
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Example 16. Let V be the vector space of real-valued functions on R. The
functions f(x) = x and g(x) = x2 are linearly independent, as can be seen as
follows. Suppose they were not. Then

a1f + a2g = 0

for some real numbers a1, a2 such that (a1, a2) 6= (0, 0). Then

a1f(x) + a2g(x) = 0 ∀x ∈ R

a1x+ a2x
2 = 0 ∀x ∈ R

which is only true when (a1, a2) = (0, 0) because for a given value (a1, a2), the
equation a1x+ a2x

2 = 0 will have at most two solutions in x.

Example 17. Let V be the vector space of real-valued functions on R. Then
functions fn(x) = xn form an infinite linearly independent set of vectors.

Definition 18 (Informal). A subspace of a vector space is a vector space
contained in another vector space.

Definition 19 (Formal). A subspace W of a vector space V is a nonempty
subset W ⊂ V such that if w1, w2 ∈ W then w1 +w2 ∈ W , and if w ∈ W then
cw ∈ W for c ∈ F.

Example 20. Let V be the vector space of all functions from R to itself. Let
W be the space of all functions which send 0 to 0. Then W is a subspace.

Example 21. Let V = Fn and let W ⊂ V be the set of lists of n numbers of
the form (a1, . . . , an−1, 0). Then W is a subspace of V .

Example 22. Let V = Fn and let W ⊂ V be the set of lists of n numbers of
the form (a1, . . . , an−1, 1) then W is not a subspace of V .

Example 23. Geometrically speaking, the subspaces of R3 are: the whole
space, the set {0}, lines passing through 0, and planes passing through 0.

Example 24. Let V be the collection of real-valued functions on R. Polyno-
mial functions form a subspace of V .

Proposition 25. The intersection of two subspaces is a subspace.

Proof. Let W1 and W2 be two subspaces of V and Let v, u ∈ W1 ∩W2. Then
since v ∈ W1 and u ∈ W1 then v + u ∈ W1. Simiarly, since v ∈ W2 and
u ∈ W2, then v + u ∈ W2. Hence v + u ∈ W1 ∩W2. The proof to show that
cv ∈ W1 ∩W2 for c ∈ F is similar.

Definition 26. Let {v1, v2, . . .} be a collection of vectors in V . The span of
{v1, v2, . . .} is the set of linear combinations of elements of {v1, v2, . . .}.
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Remark 27. A linear combination of elements of {v1, v2, . . .} is by definition
a finite sum

a1vi1 + · · ·+ anvin

here ik ∈ {1, 2, . . .}. In particular, infinite sums

∞∑
i=1

aivi

are linear combinations only if all but finitely many of the ai are zero.

Proposition 28. The span of {v1, v2, . . .} ⊂ V is a subspace of V .

Proof. Let W be the span of {v1, . . . , vn}. Two vectors in W are of the form

a1vi1 + · · ·+ anvin and b1vi1 + · · ·+ bnvin

Their sum

a1vi1 + · · ·+ anvin + b1vi1 + · · ·+ bnvin = (a1 + b1)vi1 + · · ·+ (an + bn)vin

is also in W . Similarly

c(a1vi1 + · · ·+ anvin) = ca1vi1 + · · ·+ canvin

is in W .

Definition 29. An ordered list of vectors (v1, v2, . . .) in V is called a basis if
any vector v ∈ V can be written uniquely as a linear combination

v = a1vi1 + · · ·+ anvin .

Said another way, (v1, v2, . . .) is a basis of V if any vector v ∈ V can be written
as

v = a1vi1 + · · ·+ anvin

and if
v = a1vi1 + · · ·+ anvin = b1vi1 + · · ·+ bnvin

then
ai = bi ∀i.

Note that the basis is not just a set of vectors but an ordered set. For
example, the following are two different bases of R2:(

1
0

)
,

(
1
1

)
and

(
1
1

)
,

(
1
0

)
.

Example 30. Let ei ∈ Fn be (0, 0, . . . , 0, 1, 0, . . . , 0), the zero list except for a
1 in the ith position. Then (e1, . . . , en) is a basis of Fn, sometimes called the
“standard basis”.
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Example 31. Let V be the vector space of all polynomials in the variable x
with coefficients in F. Then

(1, x, x2, x3, . . . , xn, . . .)

is a basis of V . Another basis is given by(
1, x,

x2

2!
,
x3

3!
, . . . ,

xn

n!
, . . .

)
.

Proposition 32. A list of vectors (v1, v2, . . .) in V is a basis for V if and only
if the set {v1, v2, . . .} is linearly independent and spans V .

Proof. First I prove that the fact that (v1, v2, . . .) is a basis implies that
{v1, v2, . . .} is linearly independent and spanning.

So suppose (v1, v2, . . .) is a basis. Suppose for a contradiction that the set
{v1, v2, . . .} is linearly dependent. Then there would exist some equality

a1vi1 + · · ·+ anvin = 0

where each vik is different and not all of the ais are zero. Here 0 is expressed as
two different linear combinations (the nonzero coefficients are not the same on
each side). This contradicts the basis assumption that each vector has a unique
expression in terms of the vi. Next observe that the fact that {v1, v2, . . .} spans
is built into the definition of a basis.

Next I prove that if {v1, v2, . . .} is linearly independent and spanning then
(v1, v2, . . .) is a basis. Suppose for a contradiction that (v1, v2, . . .) were not a
basis. Then either of two things happen:

• There exists v ∈ V that can be written in two different ways in terms of
the basis vector

v = a1vi1 + . . .+ anvin = b1vi1 + . . .+ bnvin

with (a1, . . . , an) 6= (b1, . . . , bn).

• There exists v ∈ V that cannot be written as v = a1vi1 + · · ·+ anvin .

The second bullet clearly contradicts the fact that {v1, v2, . . .} spans V . The
first bullet point implies that

0 = (a1 − b1)vi1 + · · ·+ (an − bn)vin

where (ai − bi) = 0 for at least one i. This shows that vi1 , . . . , vin is a lin-
early dependent subset of V and thus contradicts the linear independence of
{v1, v2, . . .}.

Definition 33. Given subspaces W1,W2 ⊂ V the sum W1 + W2 is the span
of vectors in W1 and W2.
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The reader is advised that the next two definitions are two different defi-
nitions of the same term. Axler uses the second definition and so we will use
that one too, though in my experience the first is more standard.

Definition 34. Let V and W be two vector spaces. The direct sum V ⊕W
is the vector space given by the set of ordered pairs

(v, w), v ∈ V, w ∈ W

with addition
(v1, w1) + (v2, w2) := (v1 + v1, w1 + w2)

and scalar action
c(v, w) := (cv, cw)

Definition 35. Given V , and two subspaces W1,W2 ⊂ V the sum W1 + W2

is called a “direct sum” if W1 ∩W2 = 0.

Remark 36. Axler uses the notation W1⊕W2 to denote the set W1 +W2 and
the assumption that it is a direct sum.

Example 37. In the vector space of all polynomials with coefficents in F, the
span of monomials of odd degree and the span of monomials of even degree
form two subspaces whose sum is a direct sum.

Example 38. In R3, let W1 be the span of (1, 0, 0) and W2 the span of (0, 1, 0).
Then W1 +W2 is a direct sum.

Proposition 39. If W1+W2 ⊂ V is a direct sum then any vector v ∈ W1+W2

can be written uniquely as v = w1 + w2 for w1 ∈ W1 and w2 ∈ W2.

Proof. Suppose that v = w1 + w2 and v = w′1 + w′2 where wi, w
′
i ∈ Wi. Then

0 = (w1 − w′1) + (w2 − w′2)

−w1 + w′1 = w2 − w′2.
The left-hand side is in W1 and the right-hand side is in W2, and since the two
sides are equal each side is in W1 ∩W2. Since W1 ∩W2 = 0 then w1 − w′1 = 0
and w2 − w′2 = 0 so w1 = w′1 and w2 = w′2.

3 Linear Maps

Definition 40. Let V and W be two vector spaces. A linear map T : V → W
is a map from V to W such that

T (v1 + v2) = T (v1) + T (v2), ∀v1, v2 ∈ V

T (cv) = cT (v), ∀c ∈ F, v ∈ V
Linear maps are also called linear transformations.
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Note that T is a map that behaves nicely with respect to addition of a
vector space: you can add two vectors then apply T , or you can apply T to
each vector then add the two resulting vectors, and the result is the same in
each case. Similarly you can multiply a vector by a scalar c then apply T , or
you can apply T and then multiply the result by c, and you get same thing in
each case.

Aside. A vector space is defined as a set V plus some associated operations:
addition and scalar multiplication. Said another way, a vector space is not
just a set but a set-with-operations. In general, to relate two sets, one uses
a map between those two sets. But to relate two sets-with-operations, one
has to use only those maps between the two sets that play nice with their
operations. The study of sets-with-operations and the related maps between
these sets-with-operations is called abstract algebra. Vector spaces are but
one example of sets-with-operations. Others include groups, rings, modules,
algebras, small categories, and many more.

Example 41. The map
π : F2 → F
π(a1, a2) = a1

is linear.

Example 42. The map
f : F2 → F

f(a1, a2) = a1 + 1

is not linear. For example

f(a1, a2) + f(a′1, a
′
2) = a1 + a′1 + 2 6= f(a1 + a′1, a2 + a′2) = a1 + a′1 + 1.

Example 43. Differentiation gives a linear map from the vector space of
polynomials over F to itself.

Exercise 44. Let T : V → W be a linear map. Then T (0) = 0.

Proposition 45. Let (v1, v2, . . .) be a basis for V . Let (w1, w2, . . .) be an
ordered list of vectors in W of the same length. Then there exists a unique
linear map T : V → W such that T (vi) = wi.

Proof. Set T (vi) = wi. Each v ∈ V can be written uniquely as a1v1+· · ·+anvn
and so, in particular, uniquely determines the ais. Therefore the definition

T (v) := a1T (v1) + · · ·+ anT (vn)

depends only v and not on the particular choice of linear combination. It is
easy to check that this definition is linear.

Suppose S(vi) = T (vi) and S is linear. Then

S(v) = S(a1v1 + · · ·+ anvn) = a1S(v1) + · · ·+ anT (vn) = T (v).
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Remark 46. The previous proposition is extremely important. It says that
in order to define a linear map you do not need to define where it sends every
vector in the vector space. Rather, you only need to define where it sends a
basis.

Definition 47. Let f : X → Y be a map of sets. The image of f is defined
to be those points y ∈ Y such that there exists x ∈ X with f(x) = y. (Note
that Axler uses the word “range” instead of “image”.)

Definition 48. Let f : X → Y be a map of sets. If f does not send two
different points of X to the same point in Y , f is said to be injective. If the
image of f is equal to Y , then f is said to be surjective. If f is both surjective
and injective, then f said to be bijective.

Proposition 49. A map f : X → Y of sets is bijective if and only if it has
an inverse. That this, if and only if there exists a map f−1 : Y → X such that
f−1 ◦ f is the identity map on X, and f ◦ f−1 is the identity map on Y .

Proof. Suppose that f is bijective, so that it is both surjective and injective.
By surjectivity, for each y ∈ Y there exists x ∈ X such that f(x) = y.
By injectivity, such an x is unique. Define f−1(y) = x and it follows by
construction that f−1 has the desired properties.

Suppose that f has an inverse f−1. Suppose for a contradiction that f is
not surjective. Then there exists y ∈ Y with no x mapping onto it. Then
f ◦ f−1 does not include y in its image, contradicting the fact that f ◦ f−1 is
the identity on Y . Suppose for a contradiction that f is not injective. Then
f sends x1, x2 ∈ X to the same point y ∈ Y . Then f−1 ◦ f sends x1 and x2
to the same point in X, contradicting the fact that f−1 ◦ f is the identity on
X.

Example 50. Let X and Y be finite sets

• There exists a injection from X into Y if and only if Y has at least as
many elements as X.

• There exists a surjection from X onto Y if and only if X has at least as
many elements as Y .

• There exists a bijection between X and Y if and only X and Y have the
same number of elements.

Thus given sets X and Y , it is inuitive to think that X and Y are the
“same size” if there exists a bijection between them. Similarly, one should
think of two vector spaces as the “same size” if there exists a linear bijection
between them.

Definition 51. A linear bijection is called an isomorphism. If there exists an
isomorphism T : V → W , then V and W are said to be isomorphic.
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Proposition 52. A linear map T : V → W is injective if and only if T (v) = 0
implies that v = 0.

Proof. Suppose T injective. Then at most one point can map to 0. Since
T (0) = 0 it follows that T (v) = 0⇒ v = 0.

Suppose that T (v) = 0⇒ v = 0. Let v1 and v2 map to the same point, so
T (v1) = T (v2). Then T (v1) − T (v2) = 0 ⇒ T (v1 − v2) = 0 ⇒ v1 − v2 = 0, so
v1 = v2. Hence T is injective.

Exercise 53. Let T : V → W be an isomorphism of vector spaces. Let T−1

be an inverse. Show that T−1 is a linear map.

Proposition 54. Let T : V → W be an isomorphism. If (v1, v2, . . .) is a basis
for V , then (T (v1), T (v2), . . .) is a basis for W .

Proof. Linear independence of {T (v1), T (v2), . . .} follows from injectivity of T .
That {T (v1), T (v2), . . .} spans follows from surjectivity of T . Details are left
to the reader.

A corollary of this proposition is the important

Corollary 55. Two vector spaces are isomorphic if and only if there they have
bases of the same size.

Remark 56. If the bases are finite, the phrase “bases of the same size” means
exactly what you’d think. If the bases are not finite, the phrase means “there
exists a bijection between the two bases”. It is a nontrivial but interesting fact
that there exist different infinite sets that are not in bijection. For example,
there is no bijection between the integers Z and the real numbers R.

Definition 57. The dimension of a vector space V , dim(V ), is the number of
elements in a basis of V .

Because of the corollary, the dimension does not depend on the particular
basis for V .

Corollary 58. A vector space V of dimension n is isomorphic to Fn.

For dim(V ) = n, an explicit isomorphism T : V → Fn is given by first
picking a basis (v1, . . . , vn) for V and defining T (vi) = ei, where ei are the
standard basis vectors for Fn.

Matrices. Suppose T : V → W is a linear map and (v1, . . . , vn) is a basis
for V and (w1, . . . , wm) is a basis for W . Since T is determined by the vectors
T (vi) and each T (vi) can be written uniquely in terms of the wi, T can be
encoded into nm pieces of information. Namely, if

T (vi) = M1iw1 +M2iw2 + · · ·+Mmiwm

and if
v = a1v1 + · · ·+ anvn
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then
T (v) = a1T (v1) + · · ·+ anT (vn)

= a1 (M11w1 +M21w2 + · · ·+Mm1wm)+· · ·+an (M1nw1 +M2nw2 + · · ·+Mmnwm)

=
m∑
j=1

(
n∑
i=1

Mjiai

)
wj

so that T is determined by the nm numbers Mji for 1 ≤ j ≤ m and 1 ≤ i ≤ n.
Note that the formula here is precisely that of matrix multiplication:

M11 M12 M13 · · · M1n

M21 M22 M23 · · · M2n

M31 M32 M33 · · · M3n
...

...
...

. . .
...

Mm1 Mm2 Mm3 · · · Mmn




a1
a2
a3
...
an


where the jth entry of the resulting m× 1 matrix is the coefficient of wj.

Said another way, given the bases v1, . . . , vn and w1, . . . , wm of V and W ,
a linear map T : V → W can be encoded in the m × n matrix with entries
Mji where Mji is the coefficient of wj in the expansion of T (vi) in terms of the
basis (w1, . . . , wm).

If T : V → W and S : W → U are linear maps, then their composition is
a linear map S ◦ T : V → U . Let (v1, . . . , vn), (w1, . . . , wm), and (u1, . . . , up)
be bases of V , W , and U , respectively. With respect to these bases, let T
be represented by the m× n matrix M with entries Mji and S by the p×m
matrix N with entries Nkj. That is,

T (vi) =
m∑
j=1

Mjiwj

S(wj) =

p∑
k=1

Nkjuk.

Then

(S ◦ T )(vi) = S(T (vi)) =
n∑
j=1

Mji

(
m∑
k=1

Nkj

)
uk =

p∑
k=1

(
m∑
j=1

NkjMji

)
uk

so that the matrix for S◦T with respect to the bases (v1, . . . , vn) and (u1, . . . , up)
is

m∑
j=1

NkjMji

that is, the product of the matrices NM .

Definition 59. Let L(V,W ) denote the set of linear maps from V to W .
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Proposition 60. L(V,W ) is a vector space when given addition and scalar
multiplication as follows (T + S)(v) := T (v) + S(v) and (cT )(v) := cT (v).

Fix bases (v1, v2, . . .) and (w1, w2, . . .) for V and W . A basis for L(V,W )
is given by those transformations T (j, i) : V → W that take vi to wj and send
all other basis vectors of V to zero. With respect to the assumed bases of V
and W , T (j, i) is represented by the matrix with 1 in the jith position and 0s
elsewhere.

Corollary 61. dimL(V,W ) = (dimV )(dimW ).

Remark 62. Given a linear map T : V → W and bases for V and W , there
is a matrix representing T . Axler calls this matrix M(T ). It depends on the
bases for V and W . In the case T : Fn → Fm, there is standard choice of basis
(the standard basis). Thus to every matrix M is associated a unique linear
map T : Fn → Fm, namely the one defined by

T (ei) =
∑
j

Mjiej

where ei denote the standard basis vectors.

Definition 63. The kernel of a linear map T : V → W is the set of v ∈ V
such that T (v) = 0. Axler calls the kernel the “null space”.

Proposition 64. The kernel and image of a linear map T : V → W are
subspaces.

Proof. If T (v) = 0 and T (w) = 0 then 0 = T (v) +T (w) = T (v+w). Similarly
T (cv) = cT (v) = 0. Also note that T (0) = 0, since T (0) = T (0v) = 0T (v) = 0.

The image is a subspace because T (0) = 0, T (v) + T (w) = T (v + w), and
cT (v) = T (cv).

Exercise 65. The kernel of a linear map is {0} if and only if that map is
injective.

Linear Equations. A linear equation in m equations and n unknowns is a
collection of equations of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bn

for example {
2x1 + x2 = 1

x1 + x2 = 2
or


x1 + x2 + x3 = 1

x1 + x3 = 5

2x1 − 3x2 + x3 = −3

.

13



The general form for a linear equation can be immediately expressed as

Ax = b

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x =

x1...
xn



b =

 b1
...
bm

 .

Here the coefficients aji and bi are known and one wants to determine the xi
that satisfy all m equations.

As an m× n matrix, A can be thought of as a linear transformation from
Fn → Fm. The equation Ax = b has a solution if and only if b is in the image
of A. If it does have a solution, the kernel of A determines all of the solutions:

Proposition 66. Let T : V → W be a linear map and suppose that Tv = w.
Then all vectors v′ ∈ V such that Tv′ = w form the set v + ker(T ) in V .

Proof. Suppose that Tv′ = w. Then T (v − v′) = T (v) − T (v′) = w − w = 0.
Therefore v − v′ ∈ ker(T ) so v′ ∈ v + ker(T ).

Suppose that v′ ∈ v + ker(T ). Then v − v′ ∈ ker(T ) and so T (v − v′) = 0.
In particular T (v′) = T (v) = w.

Unless v = 0, the set v+ker(T ) is not a subspace. It is, however, parallel to
the subspace ker(T ) in the sense that it differs from that subspace by addition
of a single vector. Thus the collection of all sets of the form v+ ker(T ) divide
V up into different parallel sheets. This is best visualized for V = R3 and
dim ker(T ) = 2.

Let w1, . . . , w` be a basis for the image of T . Let v1, . . . , v` be vectors in V
such that T (vi) = wi. The vi exist because each wi is in the image of T .

Proposition 67. Any vector in v ∈ V can be written as

v = a1v1 + · · ·+ a`v` + u

where u ∈ ker(T ) and the ais are uniquely determined by v.

14



Proof. Write T (v) = a1w1 + · · · + a`w`. Because the wi form a basis of the
image of T , there is a unique choice of a1, . . . , a`. Then v− (a1v1 + · · ·+ a`v`)
is mapped under T to T (v−(a1v1+ · · ·+a`v`)) = T (v)−a1w1−· · ·−a`w` = 0.
Hence

v = (a1v1 + · · ·+ a`v`) + u

where u = v − (a1v1 + · · ·+ a`v`) is in the kernel of T .

Proposition 68. Let T : V → W be a linear map and let V be finite-
dimensional. Let u1, . . . , uk be a basis for ker(T ). Let v1, . . . , v` be as in the
previous proposition. Then u1, . . . , uk, v1, . . . , v` forms a basis of V .

Proof. v ∈ V can be uniquely written as

v = a1v1 + · · ·+ a`v` + u

where u ∈ ker(T ). u can be uniquely written

u = b1u1 + · · ·+ bkuk

because (u1, . . . , uk) is a basis for ker(T ). Hence v can be uniquely written

v = a1v1 + · · ·+ a`v` + b1u1 + · · ·+ bkuk.

Corollary 69 (“rank-nullity”). Let T : V → W and let V be finite dimen-
sional. Then dimV = dim ker(T ) + dim im(T ).

The dimension of the image of T is often called the “rank” of T , hence the
name of this corollary.

Corollary 70. Let T : V → V , that is, T sends a vector space to itself. Then
T is invertible if and only if T is injective. T is also invertible if and only if
T is surjective.

4 Eigenvectors and Jordan Normal Form

Consider the following two matrices
1 2 −1 4
6 0 −5 1
6 8 −4 4
0 0 2 9

 ,


1 0 0 0
0 2 0 0
0 0 2 3
0 0 −1 2

 .

Anyone who has spent some time with matrices would prefer the latter to the
former: it is easier to invert, to find its image, to find its kernel, et cetera. The
reason it is easier to analyze the second matrix is that one needs only analze
each of the three matrices (1 × 1, 1 × 1 and 2 × 2) on its diagonal. Three
computations involving a 1× 1 matrix, a 1× 1 matrix, and a 2× 2 matrix are
almost always going to be easier than a single computation involving a 4× 4
matrix.

15



Definition 71. A square matrix is block diagonal if it of the form
A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak


where each Ai is a square matrix and the 0 entries in the above matrix denote
matrices with all entries 0. The matrices Ai are called “blocks”.

This definition is a little silly, since every n × n matrix is block diagonal
with just a single n × n block. It is often to one’s benefit, as suggested by
two explicit 4× 4 matrices at the start of the section, if one has many smaller
blocks as opposed to just one n× n block.

Since n × n matrices represent linear transformations from Rn to itself,
there should be a corresponding notion of “blocks” in the setting of abstract
linear algebra:

Definition 72. Let T : V → V be linear. An invariant subspace for T is a
subspace U ⊂ V such that T (U) ⊂ U .

Oftentimes I’ll just write “invariant subspace” instead of “invariant sub-
space for T”. But whether or not a subspace is invariant depends on the
particular map T .

Example 73. {0} is an invariant subspace since T (0) = 0.

Example 74. V is an invariant subspace since T (V ) ⊂ V .

Example 75. ker(T ) is an invariant subspace since T (ker(T )) = {0} ⊂ ker(T )

Example 76. im(T ) is an invariant subspace since T (im(T )) consists of vec-
tors of the form T (T (v)).

Exercise 77. Let T : V → V and let U1 and U2 be invariant subspaces. Then
U1 ∩ U2 is an invariant subspace.

Definition 78. Let T : V → V . An invariant subspace U is indecomposable
if U = U1 ⊕ U2 implies that U1 = U or U2 = U .

Proposition 79. Let T : V → V and let V be finite dimensional. There
exists a collection of indecomposable invariant subspaces U1, . . . , Uk such that
V = U1 ⊕ · · · ⊕ Uk.

Proof. Note that V can be expressed as a direct sum of (possibly reducible)
invariant subspaces since V itself is an invariant subspace.

Given a decomposition of V as a direct sum of invariant subspaces:

V = W1 ⊕ · · · ⊕W`
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either all of the Wi are indecomposable or at least one is not. If the latter,
decompose a reducible invariant subspace as a direct sum of two invariant
subspaces to get a new decomposition of V as a direct sum of more subspaces.
Continue in this manner until you get a decomposition where all the invariant
subspaces are indecomposable. Note that this process terminates since there
can be at most dim(V ) subspaces in such a decomposition.

Write V = U1 ⊕ · · · ⊕ Uk as in the last proposition. Putting together
bases for each Ui produces a basis for V . With respect to this basis, T can
be written has a block diagonal matrix where each block cannot be written as
block diagonal with two or more blocks. If all of the blocks are 1× 1 matrices
one says that T is diagonalizable and that the bases for Ui (necessarily each a
single element) are eigenvectors.

Definition 80. An eigenvector for T is a vector v 6= 0 such that Tv = λv for
some λ ∈ F. The number λ is called the “eigenvalue” for v.

Remark 81. Note that if v is an eigenvalue for T with eigenvalue λ, then so
is cv for any c 6= 0.

Definition 82. A linear map T : V → V is diagonalizable if there exists a
basis of V consisting of eigenvectors for T .

Remark 83. With respect to a basis (v1, . . . , vn) of eigenvectors, the matrix
for T has its nonzero entries on the diagonal:

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

This justifies the term “diagonalizable”. Here λi is the eigenvalue for vi.

“Most” matrices are diagonalizable. Since there are infinitely many ma-
trices the word “most” has to be qualified, which I will not do here1. It
might suffice to say that if you were to use a computer to randomly sam-
ple n2 numbers from [0, 1] and put them in a matrix, that matrix would be
diagonalizable2.

However, not all linear transformations are diagonalizable:

Example 84. The linear transformation T : R2 → R2 represented by the
following matrix (

0 1
0 0

)
1The correct way: if you topologize the space of matrices in the usual way, the set of

diagonalizable matrices forms an open dense subset.
2Assume that the computer can work to arbitrary precision.
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is not diagonalizable. To see this, it is enough to check that its eigenvectors
all lie on a single line in R2, and so you cannot form a basis of R2 from them.

Let

(
a
b

)
be an eigenvector for

(
0 1
0 0

)
. Then

(
0 1
0 0

)(
a
b

)
= λ

(
a
b

)
for some λ ∈ F. Then (

b
0

)
=

(
λa
λb

)
which means that (

a
b

)
=

(
c
0

)
and λ = 0.

Definition 85. If T has an eigenvector of eigenvalue λ, the collection of eigen-
vectors for T with eigenvalue λ plus the 0 vector form a subspace called the
λ-eigenspace of T .

Exercise 86. If T is diagonalizable, then V = U1 ⊕ · · · ⊕Uk where the Ui are
the eigenspaces of T .

Remark 87. The 0-eigenspace of T is ker(T ).

The following theorem is the first time in these notes where a distinction
between R and C has been significant.

Theorem 88. Let p be a polynomial with coefficients in C. Then

p(z) = a(z − r1) · · · (z − rn)

for some a, r1, . . . , rn ∈ C.

This theorem is called the “fundamental theorem of algebra” and is usually
proved in a course in complex analysis or algebraic topology. It will not be
proved here. Note that it is not true if C is replaced by R: x2 + 1 does not
factor into two polynomials of degree 1 with coefficients in R since there is no
square root of −1 in R.

Proposition 89. Let T : V → V be a linear map of finite dimensional complex
vector spaces. Then T has an eigenvector.

Proof. Pick any nonzero vector v ∈ V . Consider the sequence of vectors

(v, T (v), T 2(v), T 3(v), . . . , ).

Since at most dim(V ) vectors in V can be linearly independent, there has to
be some m such that

{v, T (v), . . . , Tm(v)}
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is linearly dependent and hence there exists a relation

a0v + a1T (v) + · · ·+ amT
m(v).

This implies that v is in the kernel of the operator

a0 idV +a1T + · · ·+ amT
m.

By the fundamental theorem of algebra, this operator is equal to

(T − r1 idV ) ◦ · · · ◦ (T − rm idV )

for some complex numbers r1, . . . , rm. Since this operator has a kernel, it
is not invertible. Therefore for some i, (T − ri idV ) factors is not invertible.
Rank-nullity implies that T − ri idV has a vector u in its kernel.

Then
(T − ri idV )u = 0⇒ Tu = riu

so u is an eigenvector.

Definition 90. If T : V → V is a linear map and U ⊂ V an invariant
subspace, then T |U is the linear map U → U obtained by restricting T to U .

Even though there some linear transformations that are not diagonalizable,
Camille Jordan proved the following theorem in the 19th century:

Theorem 91. Let T : V → V be linear map and V a finite dimensional
complex vector space. Then there exist indecomposable invariant subspaces
U1, . . . , Uk, numbers λ1, . . . , λk ∈ C, and bases B1, . . . , Bk (where Bi is a basis
of Ui) such that V = U1 ⊕ · · · ⊕ Uk and, with respect to the basis Bi, T |Ui

can
be represented by a matrix that looks like

λi 1 0 · · · 0
0 λi 1 · · · 0

0 0 λi
. . . 0

...
...

. . . . . . 1
0 0 0 · · · λi


(a matrix with the same entry λi on the main diagonal and 1s on the diagonal
above that).

With respect to the basis (B1, . . . , Bk) in the statement of the theorem,
the matrix for T might look something like

λ1 1
λ1 1

λ1
λ2

λ3
λ4 1

λ4


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(where the blank space means entries filled with 0). A matrix in this form is
said to be in “Jordan normal form”. Each block for T |Ui

is called a “Jordan
block”. In the 7 × 7 matrix pictured above, there are four Jordan blocks of
sizes 3, 1, 1, and 2. Note that it may be the case that λi = λj for i 6= j.

Remark 92. If all the Jordan blocks are 1 × 1 (meaning all the subspaces
Ui in the statement of the theorem are 1-dimensional) then the matrix is
diagonalizable, the basis (B1, . . . , Bk) of V is a basis of eigenvectors and the
Jordan normal form is diagonal.

Note that by Proposition 79, V can be decomposed into V = U1⊕· · ·⊕Uk
where each Ui is an indecomposable invariant subspace. Therefore Theorem
91 follows from the following easier proposition:

Proposition 93. Let T : V → V with V a finite dimensional complex vector
space and suppose that V is an indecomposable invariant subspace. Then there
exists a basis (v1, . . . , vn) for V and a number λ such that with respect this
basis T is represented by a matrix of the form

λ 1 0 · · · 0
0 λ 1 · · · 0

0 0 λ
. . . 0

...
...

. . . . . . 1
0 0 0 · · · λ


Before proving this proposition, it will be necessary to discuss nilpotent

transformations.

Definition 94. A linear map N : V → V is nilpotent if Nn = 0 for some n.

Proposition 95. Let N : V → V be nilpotent and let k be the largest integer
such that Nk 6= 0. Then there exist disjoint ordered finite subsets

X(0) ⊂ V, X(1) ⊂ V, X(2) ⊂ V, · · · , X(k) ⊂ V

such that
k⋃
j=0

j⋃
i=0

N i(X(j))

is a basis of V .

Proof. This proof is a meditation on the sequence of linear surjections

V
N→ im(N)

N→ im(N2)
N→ im(N3)

N→ · · · N→ im(Nk−1)
N→ im(Nk)

N→ 0.

To better understand what’s going on, first suppose that k = 1, so the
sequence is

V
N→ im(N)

N→ 0
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Pick a basis for im(N). This is a list of the form (N(v1), . . . , N(vn)). Let
X(1) := (v1, . . . , vn) so that N(X(1)) is the chosen basis of im(N). There are
two things to note. First:

ker(N) ∩ Span(X(1)) = {0}

In particular, this implies that

V = ker(N)⊕ Span(X(1))

since N maps Span(X(1)) isomorphically to im(N). Second: that N(X(1)) ⊂
ker(N). N(X(1)) is a linearly independent subset and therefore can be ex-
tended to a basis of ker(N) by adding a list of vectors X(0) ⊂ ker(N). By
rank-nullity,

X(1) ∪N(X(1) ∪X(0)

forms a basis of V . This proves the proposition in the simple case k = 1. A
potentially helpful diagram is

V N // im(N) N // 0

X(1) N(X(1))

N(X(1))

X(0)

The top line contains three vector spaces. Below each vector space is a collec-
tion of finite subsets that together form a basis for that space. A subset maps
to the subset to the right of it. If there is no subset to the right of it, it maps
to 0.

It will be additionally helpful to do the next case, where k = 2. Consider a
basis N2(X(2)) of im(N2) where X(2) is a linearly independent list of vectors
in V . Again, N(X(2)) ∩ ker(N) = {0} which implies that

im(N) = N(X(2))⊕ (ker(N) ∩ im(N))

Since N2(X(2)) ⊂ ker(N) is a linearly independent set you can add additional
vectors in ker(N) ∩ im(N) to make it a basis. These vectors are of the form
N(X(1)) for some list of vectors X(1) in V . Therefore N(X(2))∪N2(X(2))∪
N(X(1)) forms a basis of im(N). As it stands, X(2) ∪ N(X(2)) ∪ X(1) is
a linearly independent subset of N that maps isomorphically onto im(N).
Therefore

V = Span(X(2) ∪N(X(2)) ∪X(1))⊕ ker(N)

As before, N2(X(2))∪N(X(1)) forms a linearly independent subset of ker(N).
Extend it to a basis by adding on vectors X(2). Therefore

X(2) ∪N(X(2)) ∪X(1) ∪N2(X(2)) ∪N(X(1)) ∪X(0)
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is a basis of V . This proves the proposition in the case where k = 2. The
corresponding picture is

V N // im(N) N // im(N2) N // 0

X(2) N(X(2)) N2(X(2))

N(X(2)) N2(X(2))

X(1) N(X(1))

N2(X(2))

N(X(1))

X(0)

The reader who checks the case k = 3 in the same manner is sure to
believe the proposition. For completeness, the inductive proof of the general
case follows.

Suppose inductively that you have constructed setsX(k), X(k−1), . . . , X(j+
1) such that the union of

N j+1(X(k))

N j+2(X(k)), N j+1(X(k − 1))

N j+3(X(k)), N j+2(X(k − 1)), N j+1(X(k − 2))

...

Nk(X(k)), Nk−1(X(k − 1)), . . . , N j+1(X(j + 1))

is a basis im(N j+1) satisfying the following two properties: (1) the span of the
last line is ker(N) ∩ im(N j+1) and (2) the span of all but the last line maps
isomorphically onto im(N j+2). Then it is routine (in a similar manner to the
cases k = 1 and k = 2) to check that the union of

N j(X(k))

N j+1(X(k)), N j(X(k − 1))

N j+2(X(k)), N j+1(X(k − 1)), N j(X(k − 2))

...

Nk−1(X(k)), Nk−2(X(k − 1)), . . . , N j(X(j + 1))

spans a subspace of im(N j) that maps isomorphically onto im(N j+1) and that

Nk(X(k)), Nk−1(X(k − 1)), . . . , N j+1(X(j + 1))

spans a subspace of ker(N) ∩ im(N j) that can be completed to a basis by
adding a linearly independent subset of the form N j(X(j)) for some subset
X(j) in V . Hence the union of

N j(X(k))
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N j+1(X(k)), N j(X(k − 1))

N j+2(X(k)), N j+1(X(k − 1)), N j(X(k − 2))

· · ·

Nk−1(X(k)), Nk−2(X(k − 1)), . . . , N j(X(j + 1))

Nk(X(k)), Nk−1(X(k − 1)), . . . , N j(X(j))

forms a basis of im(N j) that satisfies (1) the span of the last line is ker(N) ∩
im(N j) and (2) the span of all but the last line maps isomorphically onto
im(N j+1).

The proposition follows from the induction when j = 0.

Corollary 96. Let N : V → V be a nilpotent linear map. Then there exists a
basis of N which is the union lists of the form

(v,N(v), N2(v), . . . , N j(v))

where N j(v) ∈ ker(N).

Proof. Let v be a vector in X(j).

Corollary 97. Let N : V → V be a nilpotent linear map such that V is an
indecomposable invariant subspace. Then there exists a basis of V of the form

(Nn−1(v), Nn−2(v), . . . , N(v), v)

where Nn−1(v) ∈ ker(N). In particular, with respect to this basis, N is repre-
sented by a matrix of the form

0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

. . . . . . 1
0 0 0 · · · 0


Proof. In the previous corollary, each list (v,N(v), N2(v), . . . , N j(v)) is a basis
for an invariant subspace, call it Ui. Since these lists together form a basis of
V , it follows that Ui ∩ Ui′ = {0} for i 6= i′. Hence

V = U1 ⊕ · · · ⊕ Uk

expresses V as a direct sum of invariant subspaces. Since V is indecomposable,
all but one of the Uis must be zero.

Most of the work in the proof of Jordan normal form is contained the
previous study of nilpotent linear maps. What follows are two preparatory
propositions and then the proof of Proposition 93.
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Proposition 98. Let T : V → V and with V finite dimensional. If im(T k) =
im(T k+1) for some k, then im(T k) = im(T `) for all ` ≥ k.

Proof. The important point to note is that

T a(im(T b)) = im(T a+b)

because the left side consists of vectors of the form T a(T b(v)) and the right side
consists of vectors of the form T a+b(v). These two sets of vectors, of course,
are the same.

The proof we will be by induction on `. The base case ` = k+1 is assumed
in the statement of the proposition. Assume that im(T `) = im(T k). You want
to show that im(T `+1) = im(T k) Write im(T `+1) = T (im(T `)) = T (im(T k)) =
im(T k+1) = im(T k).

Proposition 99. Let T : V → V be a linear map with dim(V ) = n. Then
V = ker(T n)⊕ im(T n).

Proof. Consider the decreasing sequence of subspaces

V ⊃ im(T ) ⊃ im(T 2) ⊃ im(T 3) ⊃ · · · .

Each subspace either has strictly smaller dimension than the last, or all sub-
spaces after it are equal to each other (Proposition 98). Since dim(V ) = n,
the dimension cannot decrease for more than n steps in the sequence. Hence
im(T n) = im(T n+1) = im(T n+2) = · · · . In particular, im(T n) = im(T 2n).

Rank nullity implies that dim(V ) = dim(ker(T n)) + dim(im(T n)) so in
order to show that V = ker(T n)⊕ im(T n) it is enough to show that ker(T n)∩
im(T n) = {0}. Let v ∈ ker(T n) ∩ im(T n). Then v = T n(w) for some w ∈
V . Also T n(v) = 0. Because T n : im(T n) → im(T 2n) is a surjection of a
vector space to itself, it is an isomorphism. Therefore if T n(T n(w)) = 0 then
T n(w) = 0. Hence v = 0.

Proof of Proposition 93. To recap the notation: T : V → V is a linear map of
a finite dimensional complex vector space to itself and V is an indecomposable
invariant subspace.

Let v0 be an eigenvalue for V with eigenvalue λ. Write dim(V ) = n. Then
by Proposition 99

V = ker((T − λ idV )n)⊕ im(T − λ idV )n).

Invariant subspaces are the same for T and T − λ idV so that V is inde-
composable invariant subspace for T − λ idV . Since ker((T − λ idV )n) and
im((T − λ idV )n) are invariant subspaces for T − λ idV , indecomposability of
V implies that

V = ker((T − λ idV )n) or V = im((T − λ idV )n).

24



Since v is a nonzero vector in ker((T − λ idV )n) it must be that

V = ker((T − λ idV )n)

This implies that T −λ idV is nilpotent. The proof then follows from Corollary
97.

Definition 100. Let T : V → V be linear. A nonzero vector v for which
(T − λ idV )n(v) = 0 for some n is called a “generalized eigenvector” with
eigenvalue λ.

Definition 101. The set of all generalized eigenvectors with eigenvalue λ,
plus the zero vector, form a subspace of V called a “generalized eigenspace”.

One consequence of the Jordan form theorem (Theorem 91) is that a linear
transformation on a finite-dimensional complex vector space has a basis of
generalized eigenvectors.

5 Inner Product Spaces

Definition 102. The dot product in Rn is a map

Rn × Rn → R
a1
a2
...
an

 ,


b1
b2
...
bn

 7→ a1b1 + a2b2 + · · ·+ anbn.

The dot product of (v, w) is often denoted v · w.

The benefits of the dot product are twofold: (1) it enables a better under-
standing of geometry in R1, R2, and R3 and (2) it provides a starting point
to generalize our familiar notions of geometry and distance to other settings
where they may be of use.

In the Cartesian plane, the distance from the origin to the point (a, b) is√
a2 + b2. This is the content of the Pythagorean theorem. Translated into

the language of the dot product, the distance from the origin to the vector
v ∈ R2 is

√
v · v.

In 3-dimensional space, a little geometric reasoning shows that the distance
from the origin to the point (a, b, c) is

√
a2 + b2 + c2. Therefore, again the

distance from the origin to the vector v ∈ R3 is
√
v · v.

It therefore makes sense to define the distance from a the origin in Rn to
a vector v ∈ Rn as

√
v · v.

Note that a set of points in R2 equidistant from the origin forms a circle.
The set of points in R3 equidistant from the origin forms a sphere. The set of
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points in R4 equidistant from the origin forms a ??? It might be interesting to
the reader to try to visualize this set.

Because the expression
√
v · v is used so much, it is given a separate name:

‖v‖ :=
√
v · v. Also note that the dot product observes two interesting features

with respect to linearity:

(v1 + v2) · (u1 + u2) = v1 · u1 + v2 · u1 + v1 · u2 + v2 · u2

(cv) · u = c(v · u) = v · (cu).

and the dot product is also “symmetric”:

v · u = u · v

The dot product enables you to do some pretty subtle distance calculations
easily.

Example 103. Consider a parallelogram ABCD. Given a line segment X let
`(X) denote its length. Then

`(AC)2 + `(BD)2 = `(AB)2 + `(BC)2 + `(CD)2 + `(DA)2.

This expresses a relation between the lengths of the edges and the lengths of
the diagonals. To prove this, put A at the origin so that AB is a vector v and
AD is a vector w. Then AC is v +w and BD is v −w (there’s some abiguity
about the sign because line segments don’t have direction, but this doesn’t
matter). Therefore

`(AC)2 + `(BD)2 = ‖v+w‖2 + ‖v−w‖2 = (v+w) · (v+w) + (v−w) · (v−w)

= v · v + 2v · w + w · w + v · v − 2v · w + w · w

= 2(v · v + w · w) = `(AB)2 + `(BC)2 + `(CD)2 + `(DA)2.

Example 104. In a similar manner, it should not be hard to prove the formula
on the cover of Axler.

The dot product has the curious property that it is determined by the
lengths of vectors. That is, if you only knew the function v 7→ ‖v‖, then you
could recover v · w for all v, w ∈ Rn:

v · w =
‖v + w‖2 − ‖v − w‖2

4
.

This follows by expanding out ‖v+w‖2 = (v+w) ·(v+w) = v ·v+2v ·w+w ·w
et cetera. Let R : Rn → Rn be a linear map that preserves distance: ‖R(v)‖ =
‖v‖ for all v ∈ Rn. Then

(Rv) · (Rw) =
‖Rv +Rw‖2 − ‖Rv −Rw‖2

4
=
‖R(v + w)‖2 − ‖R(v − w)‖2

4
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=
‖v + w‖2 − ‖v − w‖2

4
= v · w.

Therefore R preserves the dot product as well. In R2 and R3 such transforma-
tions are precisely rotations and reflections and compositions thereof.

Given two nonzero vectors v, w ∈ R2 there’s always a composition of a
rotation and (possibly) a reflection that takes v to a a vector Rv that is a
positive multiple of e1 and takes w to a vector Rw with positive e2 component.
Note that Rv ·Rw = v ·w since rotations and reflections preserve dot product.
Write

Rv =

(
a
0

)
, Rw =

(
b cos θ
b sin θ

)
.

Then
v · w
‖v‖‖w‖

=
Rv ·Rw
‖Rv‖‖Rw‖

= cos θ

where θ is the angle between Rv and Rw measured from Rv to Rw. Since R
preserves distances and hence preserves angles, it follows that if θ is the angle
between v and w then

v · w
‖v‖‖w‖

= cos(θ).

Note that there’s some abiguity in whether the angle is measured from v to
w or from w to v. Since cos(θ) = cos(−θ) this doesn’t matter in the above
formula. The major consequence of this is that angles can expressed in terms
of the dot product.

Corollary 105. The law of cosines: given a triangle ABC then

`(BC)2 = `(AB)2 + `(AC)2 − 2`(AB)`(AC) cos(∠A).

Proof. Let v be the vector from A to B and let w be the vector from A to C.
Then

`(BC)2 = ‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2v · w = ‖v‖2 + ‖w‖2 − 2‖v‖‖w‖ cos θ

where θ is the angle between v and w (i.e., the angle at A).

Exercise 106. Prove the law of sines using vectors in R2 and the dot product.

Correlation. In statistics a dataset is represented by a vector x = (x1, x2, . . . , xn)
in Rn. For example, you might collect data from n people and let xi be the
height (in inches, say) of the ith person. You might define y = (y1, y2, . . . , yn)
be the vector where yi is the weight (in pounds, say) of the ith person. You
might have seen such data presented as a collection of n points (xi, yi) in the
plane: the horizontal axis representing height (in inches) and the vertical axis
representing weight (in pounds). But another (more correct?) way to think of
x and y is as two vectors in Rn.

Suppose that we lived a fantasy world where a person’s weight (in pounds)
was always exactly twice their height (in inches). Then vector y would be
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exactly twice the vector x: y = 2x. In particular, the angle between y and x
would be zero, so

x · y
‖x‖‖y‖

= cos(0) = 1.

This is of course not the case, but something like it is the case. A person’s
weight (in pounds) might not be twice their weight (in inches) but it will be
reasonably close to that factor of 2. For example, it won’t be 1/100th of their
height or 20 times their height. Therefore, while vectors x and y collected
from real-world data won’t be multiples of each other, they’ll have a pretty
small angle θ between. In other words,

x · y
‖x‖‖y‖

= cos(θ)

will be close to 1. The quantity

x · y
‖x‖‖y‖

is (almost, but not quite!) what the statisticians call the “correlation” between
the height and weight in the sample. It has the geometric interpretation of
cosine of an angle between two vectors, but it can be computed easily from the
data collected without thinking about its geometric meaning. The actual thing
that statisticians call correlation is obtained by first orthogonally projecting
x and y onto the subspace of Rn consisting of points of the form (a1, . . . , an)
where a1 + · · · + an = 0 and then computing cosine of the angle between the
resulting vectors.

Special Relativity. The dot product is intimately related to the usual notion
of distance in Rn. If you modify the dot product a little, you get a new notion
of distance. For example, define the “Lorentzian” product on R2 as a map
R2 × R2 → R defined by(

x1
t1

)
·L
(
x2
t2

)
:= x1x2 − t1t2.

This is different from the dot product by the presence of a minus sign. The
Lorentzian inner product determines a norm-squared like the dot product

‖v‖2L := v ·L v.

One could take a square root of this norm, but this leads to sign ambiguities
so let’s avoid doing so. This Lorentzian norm-squared defines a new notion of
distance on R2. For example

‖e1‖2L = 1

so if two points in R2 differ by e1: A+ e1 = B, then the Lorentzian distance-
squared between A and B is 1. Weird things can happen with this new norm.
The norm-squared can be zero or negative:

‖e2‖2L = −1, ‖e1 + e2‖2L = 0.
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This is one reason that no one talks about ‖v‖2L and ‖v‖L. Would ‖e1‖L be i
or −i?

Defining a norm like this might seem absurd (imaginary distance?) but it’s
actually been very useful. Before discussing that, it’s interesting to contrast
the geometry involved in Lorentzian product to the geometry of the usual dot
product in R2. In R2 with the usual dot product, vectors of the same norm
form circles. On the the unit circle, one defines two functions cos and sin by
declaring the the point on the unit circle a distance θ along the circle from
the positive x-axis is (cos(θ), sin(θ)). Let R : R2 → R2 be a linear map that
preserves the dot product. Like any linear map, it is determined by R(e1) and
R(e2). Since R preserves distance, both R(e1) and R(e2) lie on the unit circle
a distance π/2 from each other. Write

R(e1) =

(
cos(θ)
sin(θ)

)
then

R(e2) =

(
− sin(θ)
cos(θ)

)
or R(e2) =

(
sin(θ)
− cos(θ)

)
.

Therefore, with respect to the standard basis, R is represented by either(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
or

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

The first represents a rotation. The second represents a reflection first, then
a rotation.

In R2 with the Lorentzian product, the vectors of the same positive or neg-
ative norm-squared form hyperbolas. Vectors of zero-norm form the two lines
spanned by e1 ± e2. Define two functions cosh and sinh as follows. On the
unit hyperbola x2 − t2 = 1, let (cosh(β), sinh(β)) be the point a (Lorentzian)
distance β along the hyperbola, measured starting at the x-axis and mov-
ing upwards. Then on the negative unit hyperbola x2 − t2 = −1, the point
(sinh(β), cosh(β)) is a (Lorentzian) distance β along the hyperbola, measured
starting at the positive t-axis and moving right.3 Let R : R2 → R2 be a trans-
formation that preserves the Lorentzian product. Since ‖e1‖2L = 1, then R(e1)
has to lie on either sheet of the hyperbola x2 − t2 = 1. Since ‖e2‖2L = −1
then R(e2) has to lie on either sheet of the hyperbola x2− t2 = −1. There are
four cases to consider, depending on which sheets R(e1) and R(e2) lie on, but

3Because eiθ = cos(θ) + i sin(θ),

cos(θ) =
eiθ + e−iθ

2
, sin(θ) =

eiθ − e−iθ

2i
.

It turns out that

cosh(β) =
eβ + e−β

2
, sinh(β) =

eβ − e−β

2
.
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consider the simplest case where R(e1) lies on the same sheet as e1 and R(e2)
lies on the same sheet as e2. Write

R(e1) =

(
cosh β
sinh β

)
for some β. Then since R(e1) ·L R(e2) = e1 ·L e2 = 0 one sees that

R(e2) =

(
sinh β
cosh β

)
.

Therefore, with respect to the standard basis, R is represented by the matrix

R =

(
cosh β sinh β
sinh β cosh β

)
.

The two lines containing vectors v such that ‖v‖2L = 0 are two eigenspaces for
this transformation, with eigenvalues cosh β + sin β and cosh β − sinh β.

Before Einstein came along, the laws of nature seemed to depend on various
constants and the distances between things, distances measured using the usual
dot product. Consider, for example, the attraction of two electrically charged
particles or the gravitational charge between massive objects

F =
kq1q2
r2

, F = −km1m2

r2
.

Einstein pointed out that the laws of nature depend on various constants
and the distances between points in space-time, not space, and with distance
measured using a Lorentzian product:

‖(x, y, z, t)‖2L = x2 + y2 + z2 − c2t2

where c is the speed of light. This is the basis of special relativity and es-
sentially all of special relativity’s quirks can be understood in terms of the
geometry of the Lorentzian product on R4 (and, hence, the geometry of hy-
perbolas).

Here’s one quirk: simultaneity no longer makes sense in special relativity;
that is, you cannot say that events A and B happen “at the same time”.
Consider the xt-plane. Two points represent points “at the same time” if they
lie on the same horizontal line. The transformations R that preserve x2 − t2
do not send horizontal lines to horizonal lines. Therefore they do not preserve
the notion of “at the time same time”. But, according to Einstein, the laws of
nature should be unchanged if you apply such a transformation R. Therefore
it does not make sense to say that two events “happen at the same time”.

Definition 107. Let V be a vector space over F. A bilinear form is a map

V × V → F

typically denoted by (v, w) 7→ 〈v, w〉, that is “linear in each factor”:

〈v1 + v2, u1 + u2〉 = 〈v1, u1〉+ 〈v1, u2〉+ 〈v2, u1〉+ 〈v2, u2〉.

〈cv, u〉 = c〈v, u〉 = 〈v, cu〉.
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Example 108. Examples of bilinear forms include the usual dot product on
Rn and the Lorentzian product ·L on R2 described above.

Axler does not discuss bilinear forms. He instead discusses a related set of
things called “inner products”.

Definition 109. Let V be a vector space over F = R,C. An inner product
on V is a map

V × V → F

typically denoted (v, w) 7→ 〈v, w〉 and satisfying4

〈v1 + v2, u1 + u2〉 = 〈v1, u1〉+ 〈v1, u2〉+ 〈v2, u1〉+ 〈v2, u2〉

〈cv, u〉 = c〈v, u〉

〈v, cu〉 = c〈v, u〉

〈v, u〉 = 〈u, v〉.

〈v, v〉 is real and nonnegative

〈v, v〉 = 0⇒ v = 0

Note that, unlike a bilinear form, an inner product is not linear in the
second factor. Instead, it’s “conjugate-linear” in the second factor. It is,
however, linear in the second factor if F = R.

Example 110. An example of an inner product is the dot product on Rn.
Non-examples are the dot product on Cn (is not conjugate-linear in the second
factor), and the Lorentzian product on R2 (violates the last two conditions).

Example 111. A new example is the “standard inner product on Cn”:

〈
z1
z2
...
zn

 ,


w1

w2
...
wn


〉

:= z1w1 + · · ·+ znwn.

Example 112. Related to the last example, let V be the vector space of
functions f : X → C where X = {x1, . . . , xn} is a set with n elements. Let δxi
be the function which is 1 on xi are 0 on the other points. Then

ei 7→ δxi

4Here if c = x+ iy ∈ C then c = x− iy ∈ C. If c ∈ R, then c = c. The complex number
c is called the “complex conjugate” of c and figures into something like the Pythagorean
theorem:

|c|2 := cc = (x+ iy)(x− iy) = x2 + y2.

Therefore |c| :=
√
|c|2 is the distance of c from the origin in C and generalizes the usual

notion of absolute value in R.
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defines an isomorphism from Cn to V . The standard inner product on Cn

corresponds to the following inner product on V :

n∑
i=1

f(xi)g(xi).

Example 113. The last example can be generalized to spaces much bigger
than X by turning the finite sum into an integral. Let L2(Rn) be the vector
space of functions f : Rn → C such that∫

Rn

|f(x)|2dx <∞.

Then it turns out that for f, g ∈ L2(Rn), the quantity∫
Rn

f(x)g(x)dx

is finite. Therefore define

〈f, g〉 :=

∫
Rn

f(x)g(x)dx.

This satisfies all the axioms of an inner product.5

Definition 114. A vector space plus an inner product, (V, 〈·, ·〉), is called an
“inner product space”.

Definition 115. Given an inner product space (V, 〈·, ·〉) the norm of a vector
is defined to be

‖v‖ :=
√
〈v, v〉.

Note that ‖v‖ = 0⇒ v = 0 and ‖cv‖ = |c|‖v‖.

Definition 116. Let (V, 〈·, ·〉) be an inner product space. Two vectors v, w
are called orthogonal if 〈v, w〉 = 0.

Note that in the usual dot product in Rn, two vectors are orthogonal if
they are at right angles to one another:

v · w
‖v‖‖w‖

= cos θ.

Proposition 117. Given an inner product space (V, 〈·, ·〉) and nonzero vectors
v, w ∈ V , then

v − 〈v, w〉
‖w‖2

w

is orthogonal to w.

5There are some fine points to be made here that require a course in measure theory to
resolve, but all of this works if you restrict to continuous functions Rn → C.
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Proof. 〈
v − 〈v, w〉
‖w‖2

w,w

〉
= 〈v, w〉 − 〈v, w〉

‖w‖2
〈w,w〉 = 0.

Proposition 118 (Cauchy-Schwarz). |〈v, w〉| ≤ ‖v‖‖w‖.

Proof.

0 ≤ ‖v‖2 +

∥∥∥∥v − 〈v, w〉‖w‖2
w

∥∥∥∥2
= ‖v‖2 +

〈
v, v − 〈v, w〉

‖w‖2
w

〉
+

〈
v − 〈v, w〉
‖w‖2

w, v

〉
+

∥∥∥∥v − 〈v, w〉‖w‖2
w

∥∥∥∥2
= ‖v‖2 +

∥∥∥∥v − 〈v, w〉‖w‖2
w

∥∥∥∥2 = ‖v‖2− 〈v, w〉
‖w‖2

〈v, w〉− 〈v, w〉
‖w‖2

〈w, v〉+ |〈v, w〉|
2

‖w‖4
‖w‖2

= ‖v‖2 − |〈v, w〉|
2

‖w‖2
.

which implies that
|〈v, w〉|2 ≤ ‖v‖2‖w‖2.

The Pythagorean theorem has an analog for arbitrary inner product spaces:

Exercise 119. Let (V, 〈·, ·〉) be an inner product space. Suppose u and v are
orthogonal. Then

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Definition 120. Let (V, 〈·, ·〉) be an inner product space. A collection of
vectors v1, . . . , vk is called “orthonormal” if

〈vi, vj〉 =

{
1 i = j

0 otherwise

An orthonormal basis is, of course, a basis which is orthonormal. Any
vector in V has a simple expression in terms of an orthonormal basis:

Proposition 121. Let (V, 〈·, ·〉) be a finite-dimensional inner product space
with an u1, . . . , un an orthonormal basis. Then for any v ∈ V :

v = 〈v, u1〉u1 + 〈v, u2〉u2 + · · ·+ 〈v, un〉un.

Proof. Write

v =
∑
i

aiui.
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Then
〈v, uj〉 =

∑
i

ai〈ui, uj〉.

By orthonormality, the only term in the sum that is nonzero is when i = j
and therefore

〈v, uj〉 = aj.

Proposition 122. Let (V, 〈·, ·〉) be an inner product space. An orthonormal
collection of vectors is linearly independent.

Proof. Let a1u1 + · · ·+ akuk = 0 be a linearly relation amongst linearly inde-
pendent orthonormal vectors. Then

0 = 〈0, uj〉 =
∑
i

ai〈ui, uj〉 = aj.

Gram-Schmidt. Let (V, 〈·, ·〉) be a finite-dimensional inner product space.
The Gram-Schmidt procedure produces an orthonormal basis of a inner prod-
uct space from any basis. Let (v1, . . . , vn) be a basis of (V, 〈·, ·〉) an inner
product space. Gram-Schmidt iteratively defines vectors u1, . . . , un such that
(u1, . . . , un) is an orthonormal basis of V .

u1 :=
v1
‖v1‖

.

Note that u1 is defined by scaling v1 to be have norm 1.

u2 :=
v2 − 〈v2, u1〉u1
‖v2 − 〈v2, u1〉u1‖

.

Note that u2 is defined as in Proposition 117 by subtracting off the right scalar
multiple of u1 so as the make it orthogonal to u1, then rescaling to make it
have norm 1.

u3 :=
v3 − 〈v3, u2〉u2 − 〈v3, u1〉u1
‖v3 − 〈v3, u2〉u2 − 〈v3, u1〉u1‖

.

Note that u3 is defined by subtracting off the right scalar multiples of u1 and
u2 to make it orthogonal to those two vectors, then rescaling to make it have
norm 1.

u4 :=
v4 − 〈v4, u3〉u3 − 〈v4, u2〉u2 − 〈v4, u1〉u1
‖v4 − 〈v4, u3〉u3 − 〈v4, u2〉u2 − 〈v4, u1〉u1‖

.

At this point the reader should be able to understand the pattern. One stops
once one produces un. At the end there are n orthonormal vectors, hence
n linearly independent vectors of an n-dimensional vector space. Therefore
(u1, . . . , un) forms a basis.
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Example 123. Consider R2 with the dot product and the basis

v1 =

(
2
0

)
, v2 =

(
2
1

)
.

Gram-Schmidt is applied as follows:

‖v1‖ =
√

22 + 02 = 2

so

u1 =
v1
‖v1‖

=

(
1
0

)
.

Since
v2 · u1 = 2

then

v2 − (v2 · u1)u1 =

(
0
1

)
and ‖v2 − (v2 · u1)u1‖ = 1 so

u2 =

(
0
1

)
.

As a sanity check, one indeed sees that (u1, u2) is an orthonormal basis.

Definition 124. Let (V, 〈·, ·〉) be an inner product space. Let U ⊂ V be a
subspace. Define

U⊥ = {v ∈ V |〈v, u〉 = 0 ∀u ∈ U}.

That is, the set of vectors in V whose inner product with everything in U is
zero. U⊥ is called the “orthogonal complement” of U .

In R2 and R3 with the dot proudct, vẇ = 0 implies that v and w are at
right angles, so geometrically U is perpendicular to U⊥.

Example 125. Consider R3 with the dot product. Let U = Span(1, 1, 1).
Then

U⊥ =


ab
c

 |a+ b+ c = 0

 =


 a

b
−a− b

 |a, b ∈ R

 .

Therefore  1
0
−1

 ,

 0
1
−1


forms a basis of U⊥.

Proposition 126. Let (V, 〈·, ·〉) be an inner product space. Then

V = U ⊕ U⊥.
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Proof. First note that if u ∈ U ∩ U⊥ then 〈u, u〉 = 0, so that (by one of the
axioms of an inner product space) u = 0. Therefore U ∩ U⊥ = {0}.

Let u1, . . . , uk be an orthonormal basis of U . Extend to a basis to all of
V : (u1, . . . , uk, vk+1, . . . , vn). Apply Gram-Schmidt to this basis to produce an
orthonormal basis (u1, . . . , un). Note that Gram-Schmidt does nothing to the
first k vectors (since they’re already orthonormal) and that uk+1, . . . , un are or-
thogonal to all the previous vectors, hence in U⊥. Since V = Span(u1, . . . , un) ⊂
U + U⊥ it follows that V = U + U⊥.

Definition 127. Let V be an inner product spcae. Since V = U ⊕ U⊥, any
vector v ∈ V can be written uniquely as v = u + w for some u ∈ U and
w ∈ U⊥. The vector u is called the “orthogonal projection of v onto U”. Let

PU : V → V

be the (linear) map that sends each vector to its orthogonal projection.

Remark 128. Note that (U⊥)⊥ = U . Therefore PU + PU⊥ = idV .

Given an orthonormal basis of U ⊂ V there’s a simple formula for the or-
thogonal projection to U . For simplicity, assume that V is finite-dimensional.
Let (u1, . . . , uk) be a basis for U . As in the proof of Proposition 126, ex-
tend it to an orthonormal basis (u1, . . . , uk, uk+1, . . . , un) of V . Therefore
(uk+1, . . . , un) is an orthonormal basis of U⊥. Given v ∈ V write

v = 〈v1, u1〉u1 + · · ·+ 〈vk, uk〉uk + 〈v, uk+1〉uk+1 + · · ·+ 〈v, un〉un.

Since since
〈v1, u1〉u1 + · · ·+ 〈vk, uk〉uk ∈ U
〈v, uk+1〉uk+1 + · · ·+ 〈v, un〉un ∈ U⊥

then
PU(v) = 〈v, u1〉u1 + · · ·+ 〈v, uk〉uk.

Proposition 129. Let V be an inner product space, v a vector in V , and U
a subspace. Then ‖PU(v)− v‖ ≤ ‖u− v‖ for all u ∈ U . Equality only occurs
when u = PU(v).

Proof. Write v = u′ +w where u′ ∈ U and w ∈ U⊥. It is enough to show that
‖PU(v)− v‖2 ≤ ‖u− v‖2.

‖PU(v)− v‖2 = ‖u′ − (u′ + w)‖2 = ‖w‖2.

‖u− v‖2 = ‖u− (u′ + w)‖2 = ‖(u− u′)− w‖2

= ‖(u− u′)2‖2 − 〈w, u− u′〉 − 〈u− u′, w〉+ ‖w‖2

= ‖u− u′‖2 + ‖w‖2 ≥ ‖w‖2 = ‖PU(v)− v‖2.
There’s an equality only when ‖u − u′‖ = 0, which, by one of the axioms of
an inner product, only occurs when u− u′ = 0.
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Thinking of norm as measuring a distance, then this proposition can be
informally phrased as saying that PU(v) is the closest point on U to v.

Example 130. Consider R2 with the dot product. What is the closest point
on the line 2x + 3 = 0 to the point (1, 3) ∈ R2? 2x + 3y = 0 is the span of
(−3, 2) so one wants to project (1, 3) onto the span of (−3, 2). Let v = (1, 3)
and

u1 =
1√
13

(
−3
2

)
be an orthonormal basis for U := Span(3, 2). Then

PU(v) = 〈v, u1〉u1 =

((
1
3

)
· 1√

13

(
−3
2

))
1√
13

(
−3
2

)
=

3

13

(
−3
2

)
.

Linear Regression. Suppose that you collect pairs of data points (xi, yi),
1 ≤ i ≤ n. For example, you might get the heights (in inches) and weights
(in pounds) of n people and xi might be the ith person’s height and yi the
ith person’s weight. As with the discussion of correlation above, instead of
thinking of the data as n pairs of points, one can think of it as two vectors

x =


x1
x2
...
xn

 , y =


y1
y2
...
yn


in Rn. The following is a recipe that one learns in a first course on statistics.
Suppose that you want to find a constant C such that, on average,

weight in pounds = C × height in inches.

C might be around 2, but is not going to be exactly 2. A reasonable thing to
do would be to find the value of C that is most consistent with your observed
data. One way to do this is to the find the value of C such that∑

i

|yi − Cxi|2

is minimized. Note that all of your datapoints satisfy yi = Cxi then this
quantity is 0. The lower this quantity is, the closer your data is to satisfying
yi = Cxi exactly for each i.

Given the vectors x and y in Rn, finding a value C that minimizes
∑

i |yi−
Cxi|2 is the same thing as finding C such that minimizes ‖y−Cx‖2, where the
norm here is from the dot product on Rn. This is the same thing as finding
the point on the span of x closest to y. Therefore, C can be calculated by

Cx = PSpan(x)(y).
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Often you don’t expect a relationship as simple as weight = C×height but
instead a relation of the form weight = C × height +D for some constants C
and D. To adapt the above this situation, instead project onto the span of x
and (1, 1, . . . , 1). Details are left to the interested reader.

Definition 131. Recall that the transpose M> of a matrix M is defined by
M>

ij := Mji. If M is m× n then M> is n×m.

Proposition 132. Let V and W be inner product spaces. If 〈Tv, w〉 = 〈Sv, w〉
for all v ∈ V and w ∈ W then T = S.

Proof. Let (v1, . . . , vn) and (w1, . . . , wm) be orthonormal bases for V and W .
Let M be the matrix for T with respect to these bases and N be matrix for S
with respect to these bases, i.e.:

T (vi) =
∑
j

Mjiwj

S(vi) =
∑
j

Njiwj.

Since the basis wj is orthonormal,

〈T (vi), wk =
∑
j

Mji〈wj, wk〉 = Mki

〈S(vi), wk =
∑
j

Nji〈wj, wk〉 = Nki

Therefore if
〈Tv, w〉 = 〈Sv, w〉

for all v, w then in particular this holds for the chosen bases of the M = N
and so T = S.

Because of this proposition one, given T : V → W a linear map of inner
product spaces, one can define T ∗ : W → V by

〈Tv, w〉 = 〈v, T ∗w〉, ∀v, w.

Definition 133. T ∗ is called the adjoint of T .

Let (v1, . . . , vn) be an orthonormal basis of V and (w1, . . . , wm) an orthonor-
mal basis of W . As in the proof of the preceding proposition, the matrix M
for T has entries

Mji = 〈T (vi), wj〉.
Let N be the matrix for T ∗. Then, similarly,

Nij = 〈T ∗(wj), vi〉 = 〈vi, T ∗(wj)〉 = 〈T (vi), wj〉 = Mji.

Therefore N = M>, the matrix for the adjoint is the complex conjugate tran-
pose of the original matrix.
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Remark 134. The map T ∗ : W → V is only defined when V and W are inner
product spaces. If there are no inner products specified, then it does not make
sense to speak of T ∗.

Remark 135. The notation T ∗ has another usage with respect to dual spaces.
These notes will not cover this usage, but it’s standard enough in mathematics
that it warrants a remark here. Given a vector space V , the dual of V ∗ is the
set of linear maps V → F, i.e., V ∗ = L(V,F). Given a linear map T : V → W ,
there’s a map

T ∗ : W ∗ → V ∗

defined by
(T ∗φ)(v) := φ(Tv)

for φ ∈ W ∗. This is not the same as the map T ∗ defined here. Again, these
notes will not this definition of T ∗ and this remark is just for context in the
greater mathematical world.
Proposition 136.

• (S + T )∗ = S∗ + T ∗

• (λT )∗ = λT ∗

• (T ∗)∗ = T

• id∗V = idV

• (ST )∗ = T ∗S∗.

Proof. These all have similar proofs. I’ll just do the first one. For all v ∈ V
and w ∈ W :

〈v, (S + T )∗w〉 = 〈(S + T )v, w〉 = 〈Sv, w〉+ 〈Tv, w〉

= 〈v, S∗w〉+ 〈v, T ∗w〉 = 〈v, (S∗ + T ∗)w〉.

Since
〈v, (S + T )∗w〉 = 〈v, (S∗ + T ∗)w〉

for all v ∈ V and w ∈ W then (S + T )∗ = S∗ + T ∗.

Proposition 137. ker(T ∗) = (ImT )⊥ and im(T ∗) = (ker(T ))⊥.

Proof. These two equalities are similar so I’ll just do the first one. I’ll show
that ker(T ∗) ⊂ (imT )⊥ and then (imT )⊥ ⊂ ker(T ∗).

Let w ∈ ker(T ∗). Then 〈T (v), w〉 = 〈v, T ∗(w)〉 = 0 so w is orthogonal to
everything in the image of T .

Let w ∈ (imT )⊥. Then 0 = 〈w, T (v)〉 = 〈T ∗w, v〉 for all v ∈ V . In
particular, this holds for v = T ∗w. Then 〈T ∗w, T ∗w〉 = 0 so T ∗w = 0.
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Definition 138. Let V be an inner product space. A map T : V → V is
called self-adjoint if T ∗ = T .

Equivalently, self-adjoint maps are those maps such that 〈Tv, u〉 = 〈v, Tu〉
for all v, u ∈ V .

An Analogy. adjoint:linear maps::complex conjguation:complex numbers

Proposition 139. Let V be an inner product space and T : V → V self-
adjoint. The eigenvalues of T are real.

Proof. Suppose that Tv = λv, then

〈Tv, v〉 = λ〈v, v〉

but also
〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉.

If v is an eigenvector then, by definition v is nonzero, so 〈v, v〉 6= 0. Therefore
λ = λ so λ must be real.

To Continue The Analogy. self-adjoint operators:linear maps::real num-
bers:complex numbers

Quantum Mechanics. Historically, the most significant application of self-
adjoint operators comes from quantum mechanics. Quantum mechanics is
the physical theory of very small particles. Whereas macroscopic objects are
governed by Newton’s laws, submicroscopic (think like a proton or an electron)
objects are governed by a different set of laws. It turns out that linear algebra
is the right mathematical language for these different sets of laws. In fact, when
Werner Heisenberg first formulated quantum mechanics, he re-discovered the
concept of a matrix.

The strangest thing about quantum mechanics is the notion that you can-
not always say “the particle is at the point x”. Rather you might only be able
to say something like “there is a a 30% chance the particle is at x and a 70%
change the particle is at y.”

Here is what is happening linear-algebraically. For simplicity assume the
particles are constrained to lie on a line (instead of three-dimensional space)
so their positions and momentums are real numbers. In classical mechanics a
particle is described by its position x and its momentum p. The momentum
is the particle’s mass times its velocity, so the position-momentum pair is
essentially describes where the particle is and where it is going. In quantum
mechanics, a particle is instead described by a vector ψ in some complex inner
product space V . For simplicity, one assumes that ‖ψ‖2 = 1. The vector
space V depends on what sort of particle you’re studying. There is a “position
operator” X : V → V and a “momentum operator” P : V → V . X and P
are both self-adjoint and the (necessarily real) eigenvalues of X and P are the
possible positions and momentums you might observe. When you observe a
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particle, you’re not guaranteed to get a predictable position or momentum.
Rather you’ll get one randomly selected from the eigenvalues of X and P .
The chance a particular eigenvalue is selected depends on what the vector ψ
is. Exactly how this randomness works is still mysterious today.

What can be said is that 〈ψ,Xψ〉 is the average position. That is, if you
you set-up many identical particles in the state ψ, measure the positions in
each of them, and find the average then you end up with 〈ψ,Xψ〉. Similarly
〈ψ, Pψ〉 is the average momentum. If ψ happens to be an eigenvector of X
with eigenvalue x then there is a 100% chance you measure the position as x.
Similarly for eigenvectors of P . The Heisenberg uncertainty principle, which
states that you cannot know the position and momentum of a particle at the
same time, can be restated linear-algebraically as the fact that X and P do
not have any common eigenvectors.

Self-Adjoint Operators and Graphs. A more recent and simpler applica-
tion of self-adjoint operators comes from the theory of graphs. A graph6 is a
collection of dots (called vertices) and edges connecting those dots, e.g.,

.

Here I have numbered the vertices. Graphs model a set (the set of vertices)
plus relationships between the elements (the edges). For example the vertices
might model people and the edges friendships. Or the vertices might model
webpages and edges links. The adjaceny matrix of a graph Γ, A(Γ) is a matrix
where A(Γ)ij is the number of edges between i and j. Note that the adjacency
matrix needs a numbering of the vertices. For example:

A

  =

0 1 2
1 0 1
2 1 0

 .

A(Γ) is always symmetric and therefore self-adjoint for the inner product on
Rn. Here n is the number of vertices of Γ. Note that

A(Γ)ijA(Γ)jk

is the number of paths in Γ from i to k that pass through j. Hence

(A(Γ)2)ik =
∑
j

A(Γ)ijA(Γ)jk

is the total number of two-step paths from i to k. Similarly, the ijth entry
of A(Γ)n is the number of n step paths from i to j. Recall that computing

6Terminology note: sometimes people call this a “mulitgraph” and the reserve the term
“graph” for the situation where each edge is determined by its endpoint vertices.
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the powers of matrices is made easy by finding eigenvectors. Therefore there
is a solution to the combinatorial problem of finding n step paths from i to j
solved in terms of the eigenvalues of A(Γ). This is a recurring theme in graph
theory: to Γ you associate some matrix and determine properties of that graph
from the eigenvalues of that matrix.

It turns out that self-adjoint operators are diagonalizable. In fact, self-
adjoint operators are part of a larger class of operators called “normal oper-
ators”. Normal operators are diagonalizable. The proof will involve several
propositions.

Definition 140. Let V be an inner product space. T : V → V is called
normal if T ∗T = TT ∗.

Example 141. Suppose T ∗ = T and T ∗ = −T or T ∗ = T−1. Then T is
normal.

The next few propositions will all be preparations for proving that normal
operators are diagonalizable.

Proposition 142. Let V be a complex inner product space and T : V → V
any linear map. Then 〈Tv, v〉 = 0 if and only if T = 0.

Proof. Assume 〈Tw,w〉 = 0 for all w ∈ V .

0 = 〈T (Tv + v), T v + v〉 = 〈T 2v, Tv〉+ 〈Tv, Tv〉+ 〈Tv, v〉+ 〈T 2v, v〉.

By assumption, 〈T 2v, Tv〉 = 0 and 〈Tv, v〉 = 0. Therefore

〈Tv, Tv〉+ 〈T 2v, v〉 = 0.

A similar computation for

0 = 〈T (Tv + iv), T v + iv〉

shows that
〈Tv, Tv〉 − 〈T 2v, v〉 = 0

and hence 〈Tv, Tv〉 = 0, so that Tv = 0. Since this holds for any v, it follows
that T = 0.

Proposition 143. T is normal if and only if ‖Tv‖ = ‖T ∗v‖.

Proof.

T normal⇔ T ∗T − TT ∗ = 0⇔ 〈(T ∗T − TT ∗)v, v〉 = 0

⇔ 〈T ∗Tv, v〉 = 〈TT ∗v, v〉 ⇔ 〈Tv, Tv〉 = 〈T ∗v, T ∗v〉.

Exercise 144. If T : V → V is normal then (T − λ idV )∗ = T ∗ − λ idV .
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Proposition 145. Let T : V → V be normal. Then T and T ∗ have the same
eigenvectors. In fact, if Tv = λv then T ∗v = λv.

Proof. Suppose v is an eigenvector of T with eigenvalue λ. Then

‖(T − λ idV )v‖ = 0⇒ ‖(T − λ idV )∗v‖ = 0⇒ ‖(T ∗ − λ idV )v‖ = 0.

Remember that a vector of norm zero must be the zero vector.

Proposition 146. Let T be normal and let v1, v2 be eigenvectors with eigen-
values λ1, λ2. Suppose λ1 6= λ2. Then 〈v1, v2〉 = 0.

Proof. 〈Tv1, v2〉 = 〈λ1v1, v2〉 = λ1〈v1, v2〉. On the other hand, 〈Tv1, v2〉 =
〈v1, T ∗v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉. Since λ1 6= λ2, it must be the case that
〈v1, v2〉 = 0.

Exercise 147. Let T : V → V . Show that U is an invariant subspace for T ∗

if and only if U⊥ is an invariant subspace for T .

Theorem 148 (Spectral Theorem for Normal Operators). Let V be a complex
inner product space. Then T : V → V is normal if and only if T has an
orthonormal eigenbasis.

Proof. Suppose T has an orthonormal eigenbasis. By the last proposition these
are also orthonormal eigenvectors for T ∗ and hence with respect to this basis
the matrices for T and T ∗ areλ1 · · · 0

0
. . . 0

0 · · · λn

 ,

λ1 · · · 0

0
. . . 0

0 · · · λn

 .

Hence both T ∗T and TT ∗ are repsented by the same matrix|λ1|
2 · · · 0

0
. . . 0

0 · · · |λn|2


so T ∗T = TT ∗.

The proof of the other direction is by induction on dim(V ). The case
dim(V ) = 1 is easy. Assume that if a normal operator on a vector space of
dim(V ) − 1 has an orthonormal eigenbasis. Let v ∈ V be an eigenvector of
T . This is the place where the fact that V is a complex vector space is used.
Normalize v:

u1 :=
v

‖v‖
and let U = Span(u1). Since u1 is an eigenvector for T and since T is normal,
u1 is an eigenvector for T ∗. Therefore U is invariant for T ∗. Therefore U⊥ is
invariant for T . Therefore T , restricted to U⊥, (denoted T |U⊥) is a normal
operator on a vector space of dimension dim(V ) − 1. Therefore T |U⊥ has an
orthonormal eigenbasis (u2, . . . , un). Since this is an orthonormal basis of U⊥,
the basis (u1, u2, . . . , un) is an orthonormal eigenbasis for T .
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This proof doesn’t work for the case of real numbers becuase T might not
have an eigenvector. However, if T is self-adjoint you can get an eigenvector
for T :

Theorem 149 (Spectral Theorem for Self-Adjoint Operators). Let V be an
inner product space. T : V → V is self-adjoint if and only if it has an or-
thonormal eigenbasis with real eigenvalues.

Proof. If T has an orthonormal basis with real-eigenvalues then the matrix for
T with respect to this basis is diagonal with real entries. The matrix for the
adjoint will be complex conjugate transpose of the matrix for T . Since the
eigenvalues of T are real, these two matrices are the same, so T ∗ = T .

Conversely, suppose T is self-adjoint and pick a basis (v1, . . . , vn) of V . Let
M be the matrix for T with respect to (v1, . . . , vn). M can be thought of as
a linear map M : Rn → Rn. If (a1, . . . , an) ∈ Rn is an eigenvector for M
then a1v1 + · · · + anvn is an eigenvector for T . Therefore, in order to find an
eigenvector for T , it is enough to find an eigenvector for M .

The key point is that M can also be thought of as a linear map M : Cn →
Cn. Let v be an eigenvector for M in Rn with eigenvalue λ. Note that

Mv = λv ⇒Mv = λv

since M has real entries and λ is real (remember T is self-adjoint, so its eigen-
values, and hences the eigenvalues of M , are real). Therefore v is also an
eigenvector of M of eigenvalue λ and therefore so are

Re(v) =
v + v

2
and Im(v) =

v − v
2i

.

Since v is nonzero, at least one of these is an eigenvector for M that lies in Rn.
Therefore T has an eigenvector. The rest of the proof of the theorem is the

same as in the complex case.

Definition 150. Let V be an inner product space. A linear map T : V → V
is called positive semidefinite if it is self-adjoint and 〈Tv, v〉 ≥ 0 for all v ∈ V .
It is called positive definite if it is self-adjoint and 〈Tv, v〉 > 0 for all v 6= 0.

Example 151. Let M be an n× n diagonal matrix with nonnegative entries.
Equip Rn with the dot product. Then M , viewed as a map Rn → Rn, is
positive semidefinite. If the diagonal entries are all positive, the M is positive
definite.

The previous example in fact is typical of positive operators.

Proposition 152. Let V be a finite-dimensional inner product space. T : V →
V is positive semidefinite if and only if it is self-adjoint and all its eigenvalues
are real and nonnegative.
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Proof. Suppose T is positive semidefinite. Let v be an eigenvector. Then
〈Tv, v〉 = λ〈v, v〉 is nonnegative, so λ is nonnegative.

Suppose that T is self-adjoint and all its eigenvalues are nonnegative. Let
(v1, . . . , vn) be an orthonormal eigenbasis. Write

v =
∑
i

aivi.

Then
〈Tv, v〉 =

∑
i

λi|ai|2 ≥ 0.

Square Roots. Let T : V → V be positive semidefinite. Since T is self-
adjoint (as part of the definition of positive semidefinite), then T has an or-
thonormal eigenbasis (v1, . . . , vn). Let λi be the eigenvalue for vi. Since λi ≥ 0,√
λi makes sense. Define T 1/2 : V → V by T 1/2(vi) =

√
λivi. (v1, . . . , vn) is

an orthonormal eigenbasis for T 1/2 and, since the eigenvalues are nonnegative,
T 1/2 is positive semidefinite.

Here is a useful example of the square root. Equip R2 with the dot product
and let A : R2 → R2 be a positive definite map. In particular, 0 is not an
eigenvalue for A, so A is invertible. A homework assignment is to show that
〈x, y〉A := x · Ay defines a different inner product on R2. It therefore gives a
different notion of distance on R2. You can ask, what are the sets of points
equidistant from the origin? That is, what are the points x ∈ R2 such that
‖x‖2A = c (c is some constant)? You can do this by hand by writing out
a matrix for A and, as on the question from the worksheet from discussion,
you’ll find that the constant norm sets are conic sections that turn out to be
ellipses. Exactly why ellipses appear is explained by the square root. Since A
is positive with respect to the dot product, it has a positive square root A1/2.
Then 〈x, y〉 = (A1/2x) · (A1/2y). Let

X = {x ∈ R2|‖x‖2A = c}.

Then
X = {x ∈ R2|(A1/2x) · (A1/2x) = c} = {A−1/2y|y · y = c}.

Here A−1/2 is the inverse of A1/2. The set of points y ∈ R2 such that y ·y = c is
a circle, so X is A−1/2 applied to a circle. Since A−1/2 is positive with respect
to the dot product, it has an orthonormal eigenbasis. Each of these eigendi-
rections is stretched by some positive amount, and the two eigendirections are
at right angles. Therefore A−1/2 applied to a circle gives an ellipse, so X is an
ellipse.

Proposition 153. Let V be a finite-dimensional inner product space and T :
V → V positive semidefinite. Then T has a unique positive semidefinite square
root.
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Proof. The previous discussion already shows that T has a positive semidefi-
nite square root. It remains to show that it is unique.

Let R be positive semidefinite and such that R2 = T . Since R is positive
semidefinite, it has an orthonormal eigenbasis (v1, . . . , vn) such that Rvi =
µivi where µi ≥ 0. Note that Tvi = R2vi = µ2

i vi so (v1, . . . , vn) forms an
orthonormal eigenbasis of T . Therefore the eigenvalues of T are λi = µ2

i . And
hence R can is the map defined by Rvi =

√
λivi.

Definition 154. Let V be an inner product space. An isometry S : V → V
is a linear map such that ‖Sv‖ = ‖v‖ for all v ∈ V .

Said informally: S is an isometry if it preserves distances.

Proposition 155. S is an isometry of V if and only if 〈Sv, Sw〉 = 〈v, w〉 for
all v, w ∈ V .

Proof. One direction follows from the definition of isometry. For the other,
suppose that S is an isometry. If F = R, then

〈v, w〉 =
‖u+ v‖2 − ‖u− v‖2

4

so if ‖Su‖ = ‖u‖ for all u, then 〈Sv, Sw〉 = 〈v, w〉 for all v, w ∈ V . There’s a
similar formula for a complex inner product spaces that shows the same result
for the complex case.

Proposition 156. Let V be a finite-dimensional inner product space. S is an
isometry if and only if it is invertible and S−1 = S∗.

Proof. Suppose that S is an isometry. If {u1, . . . , uk} is an orthonormal set
then so is {Su1, . . . , Suk} since 〈Sui, Suj〉 = 〈ui, uj〉. Since orthornomal
sets are linearly independent it follows that {Su1, . . . , uk} is linearly inde-
pendent. In particular, if (u1, . . . , un) is an orthonormal basis of V then so is
(Su1, . . . , Sun). Therefore S is invertible (its inverse is defined by sending Sui
to ui).

Remember that if
〈T1v, w〉 = 〈T2v, w〉

for all v, w ∈ V , then T1 = T2. Since

〈S∗Sv, w〉 = 〈Sv, Sw〉 = 〈v, w〉 = 〈idV v, w〉

then S∗S = idV hence S−1 = S∗.
Conversely, suppose that S∗S = idV . Then 〈S∗Sv, w〉 = 〈v, w〉 for all

v, w ∈ V and hence 〈Sv, Sw〉 = 〈v, w〉 for all v, w ∈ V .

Example 157. Consider Rn with the dot product and let S : V → V be an
isometry. Since S takes an orthonormal basis to an orthonormal basis, since
the standard basis is an orthonormal basis for the dot product, and since the
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ith column of the matrix for S with respect to the standard basis vector is Sei,
then the columns of this matrix form an orthonormal basis. Such a matrix is
typically called an “orthogonal matrix” (though of course it really should be
called an “orthonormal matrix”).

Example 158. Consider Cn with its standard inner product and let S : V →
V be an isometry. Similarly to the last example, the columns of the matrix for
S with respect to the standard basis are orthonormal. Such a matrix is called
a “unitary matrix”.

Another way of stating the fact that self-adjoint operators have orthonor-
mal eigenbases is the following: if T : V → V is self-adjoint there exists an
orthonormal basis of V , call it (v1, . . . , vn), such that T takes each vi to a
multiple of itself. Of course, self-adjoint operators on an inner product space
are a special kind of operator and many transformations you run into in na-
ture aren’t self-adjoint. However, the following remarkable fact is true for
any transformation between inner product spaces: if T : V → W is a linear
transformation between inner product spaces, there exist orthonormal bases
(v1, . . . , vn) of V and (w1, . . . , wm) of W such that T takes each vi to a multiple
of wi. If n > m then vm+1, . . . , vn are sent to zero. This is formally stated in
the following theorem:

Theorem 159 (Singular Value Decomposition). Let V and W be finite-dimensional
inner product spaces and let T : V → W be any linear map. Then there exist
orthonormal bases (v1, . . . , vn) of V and (w1, . . . , wm) of W and nonnegative
numbers si such that

T (v) =
∑
i

si〈v, vi〉wi.

Here the sum is over 1 ≤ i ≤ n if m ≥ n and is over 1 ≤ i ≤ m if m ≤ n.

Remark 160. Note that T (vi) = siwi.

I delay the proof of this theorem for a moment. The values si are called
the “singular values” of the transformation T . There is a unique set of them,
in fact:

Proposition 161. The values si are the nonnegative square roots of the eigen-
values of T ∗T .

The proposition will follow immediately from the proof of Theorem 159.

Remark 162. The singular value decomposition theorem can be stated in
this way: there exist numbers si and orthonormal bases of V and W such that
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the matrix with respect to these bases is of the form


s1 0 0 0 0 · · · 0
0 s2 0 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 sm 0 · · · 0

 or



s1 0 0 0
0 s2 0 0

0 0
. . . 0

0 0 0 sn
0 0 0 0
...

...
...

...
0 0 0 0


depending on whether m ≤ n or m ≥ n.

Example 163. Consider R2 with the dot product. The matrix(√
3 2

0
√

3

)
is not diagonalizable. However, it does take a pair of orthonormal vectors in
R2 to a different pair of orthogonal vectors. Here is the pair:(

−
√

3/2
1/2

)
,

(
1/2√
3/2

)
.

These are sent to (
−1/2√

3/2

)
,

(
3
√

3/2
3/2

)
respectively. Therefore, if we let

v1 =

(
−
√

3/2
1/2

)
, v2 =

(
1/2√
3/2

)

w1 =

(
−1/2√

3/2

)
, w2 =

(√
3/2

1/2

)
and call the transformation T then (v1, v2) and (w1, w2) are each orthonormal
bases of R2 and

Tv1 = w1, T v2 = 3w2.

Writing an arbitrary vector in terms of v1 and v2:

v = 〈v, v1〉v1 + 〈v, v2〉v2

then shows that
T (v) = 〈v, v1〉w1 + 3〈v, v2〉w2.

The singular values of T are 1 and 3.

One might wonder how the singular vectors and singular values in the last
example were computed. Here is the trick:
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• Find an orthonormal eigenbasis of T ∗T . This is (v1, . . . , vn).

• Reorder the basis so that (v1, . . . , vk) are the eigenvectors corresponding
to nonzero eigenvalues.

• For 1 ≤ i ≤ k set wi = Tvi
‖Tvi‖ = Tvi√

λi
.

• Extend (w1, . . . , wk) to an orthonormal basis (w1, . . . , wm) of W .

That this trick works follows from the proof of the Theorem 159. Here’s a
fully worked example:

Example 164. Consider R2 with the dot product and the matrix

T =

(
2 1
−2 −1

)
which is a projection onto the subspace spanned by (1,−1), but is not an
orthogonal projection. Since(

2 −2
1 −1

)(
2 1
−2 −1

)
=

(
8 4
4 2

)
and this matrix has eigenvalues 10 and 0, the singular values of T are

√
10 and

0. An orthonormal eigenbasis for T ∗T is

v1 =
1√
5

(
2
1

)
, v2 =

1√
5

(
1
−2

)
where λ1 = 10 and λ2 = 0. Therefore set

w1 =
1√
10
Tv1 =

1√
50

(
5
−5

)
.

And let w2 be any unit length vector orthogonal to w1, for example

w2 =
1√
2

(
1
1

)
.

Then
Tv1 =

√
10w1

Tv2 = 0.

In decimal approximations:

s1 = 3.1623

s2 = 0

v1 =

(
.8944
.4472

)
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v2 =

(
.4472
−.8944

)
w1 =

(
.7071
−.7071

)
w2 =

(
.7071
.7071

)
.

Example 165. Consider changing the matrix for T just a little bit

S :=

(
2.1 1.3
−2.2 −1.1

)
Then the singular values and singular vectors of S can be computed:

s1 = 3.4821

s2 = .1580

v1 =

(
.8732
.4874

)
v2 =

(
.4874
−.8732

)
w1 =

(
.7056
.7086

)
w2 =

(
.7086
−.7056

)
.

As might be expected, the singular values and singular vectors didn’t
change by much. What’s interesting here is that, since s2 is so small, S can
be approximated by the map S̃ defined by

S̃(v1) = 3.4821w1

S̃(v2) = 0.

This is a simpler map, algebraically, since its image is one-dimensional. If
S represents some observed data or relationships, then S̃ represents a lower-
dimensional approximation of the same data or relationships. See, for example,
the next example.

Example 166. The singular values and singular vectors are used in image
processing. Consider, for example, an 8 × 6 pixel image of the number 0. It
might be represented in a matrix in the following form:

0 0 0 0 0 0
0 1 1 1 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 0 0 1 0
0 1 1 1 1 0
0 0 0 0 0 0


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Each entry, viewed as a number from 0 to 1, represents how gray the pixel is,
where 0 is completely white and 1 is completely black. Viewed as a transfor-
mation R6 → R8, the image of the matrix is dimension 2, and therefore you’d
expect two nonzero singular values.

If the image of the number 0 had some noise, the matrix might look like

0 0 0 0 0 0
0 .98 1 .98 1 0
0 1 0 0 1 0
.06 1 0 .02 1 0
0 1 .01 0 1 0
0 1 .01 0 .99 0
0 1 .96 .98 1 0
0 0 0 0 .05 0


The dimension of the image of this matrix is not 2. You’d expect many nonzero
singular values. In fact

s1 = 3.68

s2 = 1.4974

s3 = .0549

s4 = .0376

s5 = .0191

s6 = 0.

(The vectors (v1, . . . , v6) and (w1, . . . , w8) can also be computed, though I
won’t list them here.) While this new matrix has a 5-dimensional image,
its image is still “approximately” 2-dimensional: two of singular values are
much larger than the others. What this means is that this matrix can be
approximated by the transformation

v1 7→ 3.68w1

v2 7→ 1.4974w2

v3 7→ 0

v4 7→ 0

v5 7→ 0

v6 7→ 0
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One would naively expect this approximation to still have a matrix, with
respect to the standard basis, resembling “0”. Indeed, here it is:

0 0 0 0 0 0
0 .98 .99 .99 1 0
.02 1 0 0 1 0
.01 1 .01 .01 1 0
.01 1 .01 .01 1 0
.01 1 .01 .01 .99
0 1 .97 .97 1 0
0 .02 0 0 .02 0


.

The 0 is still easy to see, but this matrix can be encoded in very few pieces of
information. One need only specify the vectors v1, v2, w1, and w2 and the two
singular values s1 and s2. This is a total of 6 + 6 + 8 + 8 + 1 + 1 = 30 pieces of
information, less than the 48 required to represent the original matrix. As the
matrices become much larger, this sort of approximation becomes more and
more efficient.

Proof of Theorem 159. The trick is to let (v1, . . . , vn) be an orthonormal eigen-
basis of T ∗T . Let λ1, . . . , λn be the eigenvalues. Since T ∗T is self-adjoint, such
an eigenbasis always exists. Moreover, T ∗T is positive semidefinite:

〈T ∗Tv, v〉 = ‖Tv‖2 ≥ 0

so that λi is real and nonnegative for all i.
Reorder the eigenbasis so that v1, . . . , vk are the eigenvectors with nonzero

eigenvalues. For 1 ≤ i ≤ k, define

wi :=
Tvi√
λi
.

Note that {Tv1, . . . , T vk} are linearly independent: if

k∑
i=1

aiTvi = 0

then
k∑
i=1

aiT
∗Tvi = 0⇒ aiλivi = 0

⇒ aiλi = 0 ∀i⇒ ai = 0 ∀i.

Since for k + 1 ≤ i ≤ n, T ∗Tvi = 0 ⇒ Tvi = 0, the set {v1, . . . , vk} spans
im(T ). Hence (T (v1), . . . , T (vk)) forms a basis for im(T ). Since

〈Tvi, T vj〉 = 〈T ∗Tvi, vj〉 = λi〈vi, vj〉
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and (v1, . . . , vn) is orthonormal, then (Tv1, . . . , T vk) is an orthogonal collec-
tion. For 1 ≤ i ≤ k, let

wi :=
Tvi
‖Tvi‖

=
Tvi√
λi
.

For k + 1 ≤ i ≤ m, let wk+1, . . . , wm be an orthonormal extension to a basis
of W . Then

T (v) = T

(
n∑
i=1

〈v, vi〉vi

)
=

n∑
i=1

〈v, vi〉T (vi) =
k∑
i=1

√
λi〈v, vi〉wi

=

min(m,n)∑
i=1

√
λi〈v, vi〉wi

where the last equality uses the fact that
√
λi = 0 for k + 1 ≤ i ≤ m.

6 Changing Bases

Most linear transformations T : Fn → Fm are described as matrices written in
terms of the standard basis vector. That is, T is presented to the reader by
the matrix M such that

T (ei) =
m∑
j=1

Mjiej.

For example, suppose that the matrix for T with respect to the standard basis
is (

2 1
1 2

)
.

This describes the map
e1 7→ 2e1 + e2

e2 7→ e1 + 2e2.

Often, though, the most useful basis is not the standard basis. For example,

v1 =

(
1/
√

2

1/
√

2

)
, v2 =

(
1/
√

2

−1/
√

2

)
is (using the dot product on R2) an orthonormal eigenbasis for T . Then the
matrix for T with respect to (v1, v2) is(

3 0
0 1

)
.

You can relate the two matrix descriptions of T . Define a transformation
S : R2 → R2 by

S(e1) = v1, S(e2) = v2.
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Then
S−1(v1) = e1, S

−1(v2) = e2.

Then
S−1TS(e1) = S−1Tv1 = S−13v1 = 3ei.

Similarly S−1TS(e2) = e2. Therefore the matrix for S−1TS with respect to the
standard basis is a diagonal matrix. Let P be the matrix for S (with respect
to the standard basis) and M the matrix for T (with respect to the standard
basis). Then the matrix for S−1TS is

P−1MP.

Since
S(e1) = v1 = 2e1 + e2

S(e2) = v2 = e1 + 2e2

the columns of P are the eigenvectors of S. Explicitly:

P =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
.

P−1 =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
.

M =

(
2 1
1 2

)
P−1MP =

(
3 0
0 1

)
.

This generalizes to an arbitrary diagonalizable map T : Fn → Fn:

Proposition 167. Let T : Fn → Fn be diagonalizable with eigenbasis (v1, . . . , vn).
Define S by

S(ei) = vi

. Then the matrix P for S with respect to the standard basis vectors is the
matrix whose ith column is vi. Also if M is the matrix for T with respect to
the standard basis vectors then

P−1MP

is a diagonal matrix whose ith diagonal entry is the eigenvalue for vi.

Proof. Write vi =
∑

j ajej. Then S(ei) =
∑

j ajej and, by definition the
entries (a1, . . . , an) form the ith column of the matrix for S with respect to
the standard basis.

Since S(ei) = vi and T (vi) = λivi, then

S−1TS(ei) = λiei

so that the matrix for S−1TS (which is P−1MP ) is diagonal with λ1, . . . , λn
down the diagonal.
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Remark 168. Computing inverses of matrices can be annoyingly difficult to
do by hand. However, if you’re in Rn with the dot product or Cn with the
standard inner product, and the matrix P has orthonormal columns, then P
is an isometry of Fn and hence its inverse is its complex-conjugate transpose.
For example (

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)−1
=

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
.

This being said, it might be helpful to know the formula for inverting an
arbitrary 2× 2 matrix:(

a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
.

If ad− bc = 0 then the matrix is not invertible.

Proposition 169. Equip Rn with the dot product. Let T : Rn → Rm be a
linear map with singular vectors (v1, . . . , vn), (w1, . . . , wm) and singular values
(s1, . . . , smin(m,n)). Let F : Rn → Rn be defined by

F (ei) = vi

and let G : Rm → Rm be defined by

G(ei) = wi.

Let V and U be the matrices (with respect to the standard basis) for F and G,
respectively. Let Σ be the matrix


s1 0 0 0 0 · · · 0
0 s2 0 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 sm 0 · · · 0

 or



s1 0 0 0
0 s2 0 0

0 0
. . . 0

0 0 0 sn
0 0 0 0
...

...
...

...
0 0 0 0


depending on whether m ≤ n or n ≤ m. Then

UΣV>

is the matrix for T with respect to the standard basis.

Proof. Since T (vi) = siwi for 1 ≤ i ≤ min(m,n) and 0 otherwise, it follows
that

G−1TF (ei) =

{
siei 1 ≤ i ≤ min(m,n)

0 otherwise
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Hence the matrix for G−1TF , with respect to the standard basis, is Σ. Let M
be the matrix for T with respect to the standard basis. Then

U−1MV = Σ.

Since V and U have orthonormal columns, they are isometries and hence
V−1 = V>, U−1 = U>, so

M = UΣV>.

The decomposition M = UΣV> is called the “singular value decomposi-
tion” of the matrix M and explains the usage of the term “decomposition”.

As mentioned before, one can approximate T by only using the largest few
singular values. For example, suppose you want to approximate T by a linear
map of rank 5. If the singular values are listed in decreasing order, then this
amounts to setting all but the first five diagonal entries of Σ equal to 0, all
but the first five columns of V equal to 0, and all but the first five columns of
U equal to 0.

7 The Determinant

A permutation is a bijection from the set {1, . . . , n} to itself. For example

1 7→ 2

2 7→ 1

is a permutation of {1, 2}. There are n! permutations of {1, . . . , n}. Notation
for permutations can be cumbersome. I like “cycle notation”, which is best
explained by an example

(143)(67)

this is a permutation of {1, . . . , 7} that sends 1 to 4, 4 to 3, 3 to 1 as well 6 to
7 and 7 to 6. It sends 2 and 5 to themselves. Another example:

(1234)

is the permutation of {1, 2, 3, 4} that sends 1 to 2, 2 to 3, 3 to 4, and 4 to 1.
I’ll call the identity permutation simply e, so there are two permutations of
{1, 2}

e, (12)

and six permutations of {1, 2, 3}

e, (12), (13), (23), (123), (132).

The set of permutations of {1, . . . , n} is denoted by Sn (and is referred to
as “the symmetric group”).
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Definition 170. Let x1, x2, . . . , xn be n variables. Given σ ∈ Sn, define

sign(σ) =

∏
i<j(xσ(i) − xσ(j))∏

i<j(xi − xj)
.

This is always either 1 or −1.

To see that sign(σ) = ±1, note that the numerator and denominator have

the same n(n−1
)

2 factors, just that some might have been multiplied by −1.
For example, for n = 3:

sign((123)) =
(xσ(1) − xσ(2))(xσ(1) − xσ(3))(xσ(2) − xσ(3))

(x1 − x2)(x1 − x3)(x2 − x3)

=
(x2 − x3)(x2 − x1)(x3 − x1)
(x1 − x2)(x1 − x3)(x2 − x3)

= 1

and

sign((12)) =
(x2 − x1)(x2 − x3)(x1 − x3)
(x1 − x2)(x1 − x3)(x2 − x3)

= −1.

Since sign(σ) is either the constant function 1 or −1, then if you apply a
permutation τ to sign(σ) (i.e., to both the numerator and denominator) then
it does not change. Explicitly:

sign(σ) =

∏
i<j(xτ(σ(i)) − xτ(σ(j)))∏

i<j(xτ(i) − xτ(j))
.

Therefore

sign(σ) sign(τ) =

∏
i<j(xτ(σ(i)) − xτ(σ(j)))∏

i<j(xτ(i) − xτ(j))

∏
i<j(xτ(i) − xτ(j))∏

i<j(xi − xj)
= sign(στ).

A transposition is a permutation which switches precisely two elements of
{1, . . . , n}. For example, (12), (23), and (13) are the transpositions of Sn.

Exercise 171. The sign of a transposition is −1.

So if σ = τ1τ2 · · · τk where each τi is a transposition, then sign(σ) = (−1)k.

Example 172. Since the permutations (123) and (132) in S3 are each the
product of two transpositions, their signs are +1.

Definition 173. Let V be a vector space over F. A map φ : V×V×· · ·×V → F
is multilinear if it is linear in each factor. That is,

φ(v1, . . . , vi1 , aw + bu, vi+1, . . . , vk)

= aφ(v1, . . . , vi1 , w, vi+1, . . . , vk) + bφ(v1, . . . , vi1 , u, vi+1, . . . , vk)

for each i.
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Definition 174. Let V be a vector space over F. A map φ : V×V×· · ·×V → F
is called alternating if switching two arguments multiplies it by −1:

φ(v1, v2, . . . , w, . . . , u, . . . vk) = −φ(v1, v2, . . . , u, . . . , w, . . . , vk).

Example 175. Define φ : F2 × F2 → F by

φ

((
a
c

)
,

(
b
d

))
= ad− bc.

The reader can check that this is alternating and multilinear.

Remark 176. If φ : V × V × · · · × V︸ ︷︷ ︸
k times

→ F is alternating and σ ∈ Sk, then

φ(vσ(1), vσ(2), . . . , vσ(k)) = sign(σ)φ(v1, . . . , vk)

because σ can be written as a product of transpositions and applying each
transposition separately multiplies φ by −1.

Remark 177. If φ : V × V × · · · × V → F is alternating, then

φ(v1, . . . , w, . . . , w, . . . vk) = −φ(v1, . . . , w, . . . , w, . . . , vk)

⇒ φ(v1, . . . , w, . . . , w, . . . vk) = 0.

So φ is nonzero only when all of its arguments are different.

Theorem 178. There exists a unique multilinear alternating map

det : Fn × Fn × · · ·Fn︸ ︷︷ ︸
n times

→ F

such that det(e1, e2, . . . , en) = 1.

The map det in the theorem is called the determinant. Note that an
element of Fn × Fn × · · ·Fn︸ ︷︷ ︸

n times

can be represented by a matrix M : the ith factor

is the ith column of M .

Proof of Theorem 178. This is a proof best done backwards. That is, it is
best to suppose that det exists and simplify it a bit. This will provide some
intuition and then, with enough intuition, the proof will be easy.

Think of the list of n vectors (v1, . . . , vn) as a matrix M . That is

vi =
∑
j

Mjiej.

Then

det(M) := det(v1, . . . , vn) = det

(∑
i1

Mi11ei1 ,
∑
i2

Mi22ei2 , . . . ,
∑
in

Minnein

)
.
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By the multilinearity property of det, this is equal to

=
∑
i1

∑
i2

· · ·
∑
in

Mi11Mi22 · · ·Minnφ(ei1 , ei2 , . . . , ein).

This is a sum with nn terms. However, because det is alternating, when-
ever two of the indices are the same, i.e., ik = ij for some k and j, then
φ(ei1 , ei2 , . . . , ein) = 0. Therefore the only terms that contibute nonzero
amounts are where i1, i2, . . . , in contains all the elements in {1, . . . , n}. That is
to say, the only terms that contribute nonzero amounts are where i1, i2, . . . , in
is a permutation of 1, 2, . . . , n. That is to say, the only terms that con-
tribute nonzero amounts are where i1, i2, . . . , in = σ(1), σ(2), . . . , σ(n) for some
σ ∈ Sn. Therefore

det(M) =
∑
σ

Mσ(1)1Mσ(2)2) · · ·Mσ(n)n det(eσ(1), eσ(2), . . . , eσ(n)).

Also by the alternating property,

det(eσ(1), eσ(2), . . . , eσ(n)) = sign(σ).

So
det(M) =

∑
σ

sign(σ)Mσ(1)1Mσ(2)2) · · ·Mσ(n)n det(e1, e2, . . . , en)

and since det(e1, e2, . . . , en) = 1, then

det(M) =
∑
σ

sign(σ)Mσ(1)1Mσ(2)2 · · ·Mσ(n)n.

Remember that we started this proof supposing that det exists but really
we want to prove that it exists. At this point, the choice is obvious. Simply
define

det(M) :=
∑
σ

sign(σ)Mσ(1)1Mσ(2)2 · · ·Mσ(n)n.

Then you can check by hand that det is alternating, multilinear, and satisfies
det(e1, e2, . . . , en) = det(I) = 1. I’ll just check that it’s multilinear. Let τ ∈ Sn
be a transposition. I’d like to show that∑
σ

sign(σ)Mσ(1)1Mσ(2)2 · · ·Mσ(n)n =
∑
σ

sign(σ)Mσ(1)τ(1)Mσ(2)τ(2) · · ·Mσ(n)τ(n)

The right hand side is det(M ′) where M ′ is M but with τ applied to the
columns. Since permutations are invertible, σ = (στ−1)τ .∑

σ

sign(σ)Mσ(1)τ(1)Mσ(2)τ(2) · · ·Mσ(n)τ(n)

=
∑
σ

sign(σ)M(στ−1)τ(1)τ(1)M(στ−1)τ(2)τ(2) · · ·M(στ−1)τ(n)τ(n)
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Applying τ to the second argument has simply scrambled up the factors in
each summand, so this is the same thing as∑

σ

sign(σ)M(στ−1)(1)1M(στ−1)(2)2 · · ·M(στ−1)(n)n.

Since τ is fixed, as σ varies over all permutations, so does στ−1. Therefore
setting σ′ = στ−1 shows this is equal to∑

σ′

sign(σ′τ)Mσ′(1)1Mσ′(2)2 · · ·Mσ′(n)n

= sign(τ)
∑
σ′

Mσ′(1)1Mσ′(2)2 · · ·Mσ′(n)n = − det(M).

Exercise 179. Prove that det(M) = det(M>).

Corollary 180. det(M) is alternating the in the rows too: if M ′ is obtained
from M by switching two rows, then det(M ′) = − det(M).

There’s an inductive way to compute the determinant called “expansion
by minors”. For simplicity, here it is described by expanding the down the
first column:

Proposition 181.

det(M) =
n∑
i=1

(−1)i−1Mi1 det(M(i))

where here M(i) is the (n− 1)× (n− 1) matrix obtained from M by removing
the 1st column and the ith row.

Proof. Let M(i) be obtained from M by replacing the first column of M by ei.
Then by multilinearity of det,

det(M) =
n∑
i=1

Mi1M(i).

Note that

M(i) =



0 M12 M13 · · · M1n

0 M22 M23 · · · M2n
...

...
...

...
...

0 M(i−1)2 M(i−1)3 · · · M(i−1)n
1 Mi2 Mi3 · · · Min

0 M(i+1)2 M(i+1)3 · · · M(i+1)n
...

...
...

...
...

0 Mn2 Mn3 · · · Mnn


.
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After switching the ith row (i− 1) times with the row above it you get

1 Mi2 Mi3 · · · Min

0 M12 M13 · · · M1n

0 M22 M23 · · · M2n
...

...
...

...
...

0 M(i−1)2 M(i−1)3 · · · M(i−1)n
0 M(i+1)2 M(i+1)3 · · · M(i+1)n
...

...
...

...
...

0 Mn2 Mn3 · · · Mnn


.

and it’s not hard to see that the determinant of this matrix is det(M(i)). By
the last corollary, det is alternating in the rows, so det(M(i)) = (−1)i−1 det(M(i)).

A similar result works, but with an arbitrary column instead of the first
column. Details are left to the interested reader.

Note that alternating multilinear maps

Fn × · · · × Fn︸ ︷︷ ︸
n times

→ F

form a vector space with addition

(φ+ φ′)(v1, . . . , vn) := φ(v1, . . . , vn) + φ′(v1, . . . , vn)

and scalar multiplication

(cφ)(v1, . . . , vn) := cφ(v1, . . . , vn).

Call this vector space A. The proof of Theorem 178 shows that there exists
a nonzero element in A (the determinant) and that any element in A is a
multiple of the determinant: if φ ∈ A, then the theorem says that 1

φ(I)
φ = det.

Therefore dim(A) = 1 and so any linear map A → A is multiplication by a
scalar.

Proposition 182. Given an n× n matrix M , define a map

TM : A → A

by
(TMφ)(v1, . . . , vn) = φ(Mv1, . . . ,Mvn).

Then TM is multiplication by det(M).

Proof. It is not hard to check that TM is linear. Since det forms a basis of A,
TM det = c det for some constant c. To determine c, note that

(TM det)(e1, . . . , en) = det(Me1, . . . ,Men) = det(M) = det(M) det(e1, . . . , en).

Therefore c = det(M).
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Proposition 183. det(MN) = det(M) det(N).

Proof. TN(TM(φ)) = det(N) det(M)φ. Explicitly, however,

(TN(TM(φ)))(v1, . . . , vn) = φ(MNv1, . . . ,MNvn) = TMNφ = det(MN)φ

⇒ det(MN)φ = det(M) det(N)φ.

Proposition 184. det(M) 6= 0 if and only if M is invertible. If M is invert-
ible, then det(M−1) = 1

det(M)

Proof. If M is invertible, then det(M) det(M−1) = det(MM−1) = det(I) = 1.
If M is not invertible, then the columns are linearly dependent, so one

column is a linear combination of the others. Then det(M) = 0 by multilin-
earity.

Corollary 185. λ is an eigenvalue of M if and only if det(M−λI) = 0. Here
I is the identity matrix.

Definition 186. The characteristic polynomial of M is defined by det(tI−M).
It is a polynomial of degree n in t.

By the last corollary, λ is a root of det(tI − M) if and only if λ is an
eigenvalue of M .

Example 187. Suppose you’re interested in finding the eigenvectors of−7 −8 −9
0 1 0
6 6 8

 .

The eigenvalues are the roots of

det

−7− λ −8 −9
0 1− λ 0
6 6 8− λ

 = −(λ3 − 2λ2 − λ+ 2) = −(λ2 − 1)(λ− 2)

= −(λ− 1)(λ+ 1)(λ− 2).

The eigenvectors can be calculated by solving−7 −8 −9
0 1 0
6 6 8

ab
c

 = λ

ab
c


for each of λ = 1, λ = −1, and λ = 2. For example, for λ = 2:

−7a− 8b− 9c = 2a
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b = 2b

6a+ 6b+ 8c = 2c

implies that b = 0 and a = −c so the λ = 2 eigenspace consists of vectors of
the form  a

0
−a

 .

Proposition 188. Let M be an upper triangular matrix (that is, it’s a matrix
with only zeroes below the main diagonal). Then det(M) is the product of the
diagonal entries of M .

Proof. In the definition of the determinant,

det(M) =
∑
σ∈Sn

sign(σ)Mσ(1)1 · · ·Mσ(n)n

the only term that doesn’t include a factor from below the diagonal is the one
corresponding to the identity permutation.

An alternate proof uses expansion by minors along the first column and
induction on the size of the matrix.

Given a linear map T : Cn → Cn you can find a basis (v1, . . . , vn) of Cn so
that the matrix for T with respect to (v1, . . . , vn) is in Jordan normal form.
Call this matrix J . Let P be the change of basis matrix

P (ei) = vi

and let M be the matrix for T with respect to the standard basis. Then

M = P−1JP.

Therefore
det(M) = det(J) =

∏
i

λi

where the here the product is over all the diagonal entries of J . Thus the
determinant of M is the product of the eigenvalues, counted with multiplicity.
Here the phrase “counted with multiplicity” just means that λi appears in
the product possibly several times since it may appear on the diagonal of J
multiple times.

Theorem 189 (Cayley-Hamilton). Let pM(t) = det(tI −M) be the charac-
teristic polynomial. Then pM(M) = 0.

Remark 190. This theorem famously has a false proof: simply plug M into
det(tI − M) to get pM(M) = det(MI − M) = det(0) = 0. This doesn’t
work because you want to show that pA(A) is the zero matrix and det(MI −
M) = 0 is the number zero. The lesson is that you need to be a little careful
substituting matrices into variables.
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Proof. Whether M is a real or complex matrix, you can always think of it as
a complex matrix. Let J be the Jordan form for M . Let {λ1, . . . , λk} be the
numbers that appear on the diagonal of J .

Recall that the generalized λi-eigenspace, call it Ei, is the invariant sub-
space corresponding to all the Jordan blocks with λi on the diagonal. Let
dim(Ei) = ni. Looking at the Jordan blocks it is not hard to see that λiI − J
is nilpotent and (λiI − J)ni sends any vector in Ei to 0.

Note that pM(t) = det(tI −M) = det(P (tI −M)P−1) = det(tI − J) =∏k
i=1(t− λi)ni . If I plug J into this polynomial I get

k∏
i=1

(J − λiI)ni .

This matrix acts as zero on each Ei. Since

Cn =
⊕
i

Ei

that means that this matrix is the zero matrix. Therefore
k∏
i=1

(J − λiI)ni = 0

so
k∏
i=1

(P−1(J − λiI)P )ni = 0

so
k∏
i=1

(M − λiI)ni = 0

so
pM(M) = 0.

Volume. It turns out determinants of n × n matrices with real coefficients
are related to volume. The volume of a box in Rn of side lengths (a1, . . . , an)
(where each ai ≥ 0) is a1a2 · · · an. The volume of any region in Rn is defined
by cutting it up into (potentially countably many) boxes and adding up their
volumes.7 If you apply a linear transformation to this box you get a region
with n pairs of parallel opposite faces. Such a region is called a parallelepiped.
(When n = 2 then you get a parallelogram.) If the original box is deter-
mined by sides a1e1, . . . , anen, then the parallelepiped is determined by sides
T (a1e1), . . . , T (anen). In general, a list v1, . . . , vn, determines a parallelepiped.
(If (v1, . . . , vn) is not a basis, then the parallelepiped will have some pairs of
opposite faces smushed together.)

7There are some technical details here that are resolved by a course in measure theory.
This process of measuring volume of subsets of Rn works for all reasonable subsets, but not
for every subset.
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Proposition 191. | det(v1, . . . , vn)| is the volume of the parallelpiped spanned
by v1, . . . , vn.

The proof is delayed for a bit because the proof has an unlikely input: row
reduction. There are three row operations:

(i) Add a multiple of one row to another row

(ii) Switch two rows

(iii) Multiply a row by a nonzero scalar

After performing these operations (perhaps many times over) on a matrix
M , the matrix can be transformed into one of the form:

M ′ =

(
0 I A
0 0 0

)
where I is the identity matrix, A is some matrix, and 0 stands for the 0 matrix.
Note that, except for the matrix I, none of the blocks M ′ have to be square.
The proof that row operations can always transform the matrix M into the
form M ′ is not hard. It uses double induction on the dimensions of the matrix.
I leave it to the interested reader.

The most important part about row operations for the present purposes is
that each row operation in realized by left multiplication by a matrix.

(i) A row operation of type (i) corresponds to left multiplication by

I + aFij

where a ∈ R and Fij is the matrix which is everywhere 0 except for a 1
in the ith entry. For example, in the 2× 2 case:(

1 a
0 1

)(
M11 M12

M21 M22

)
=

(
M11 + aM21 M12 + aM22

M21 M22

)
so multiplying by (

1 a
0 1

)
on the left adds a times the second row to the first row.

A matrix E of this form is called an elementary matrix of type (i). Note
that det(E) = 1.

(ii) A row operation of type (ii) corresponds to left multiplication by a matrix
which is the identity matrix except that the ith column is ej and the jth
column is ei. The is the matrix which sends all the standard basis vectors
to themselves except it switches ei an ej. For example(

0 1
1 0

)(
M11 M12

M21 M22

)
=

(
M21 M22

M11 M12

)
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so multiplying by (
0 1
1 0

)
on the left switches the first and the second rows.

A matrix E of this form is called an elementary matrix of type (ii). Note
that det(E) = −1.

(iii) A row operation of type (iii) corresponds to left multiplication by a
diagonal matrix with 1s down the diagonal except the ith entry is allowed
to be any nonzero number a. For example(

1 0
0 a

)(
M11 M12

M21 M22

)
=

(
M11 M12

aM21 aM22

)
so multiplying by (

1 0
0 a

)
on the left multiplies the second row by a.

A matrix E of this form is called an elementary matrix of type (iii). Note
that det(E) = a.

Proposition 192. Suppose that M is a square matrix whose columns form a
basis. Then M can be written as a product of elementary matrices of type (i),
(ii), and (iii).

Proof.
M ′ = E1E2 · · ·EkM

where M ′ is in the form as above. Since the right side is invertible, M ′ = I, so

M = E−1k E−1k−1 · · ·E
−1
1 .

Proof of Proposition 191. Note that an elementary matrix of type (i) or (ii)
doesn’t change volume, and the absolute value of its determinant is 1. Note
that an elementary matrix of type (iii) with nontrivial entry a multiplies vol-
ume by |a|, and its determinant is a. Since

det(M) = det(E1) det(E2) · · · det(Ek)

for some elementary matrices E1, . . . , Ek, it follows M changes volume by a
factor of | det(M)|. If M = (v1, . . . , vn), then M applied to the standard cube
spanned by (e1, . . . , en) is the parallelepiped spanned by (v1, . . . , vn). Therefore
the volume of this parallelepiped is | det(M)|.
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