Math 110 Midterm 2 (PRACTICE)
July 24, 2018
50 Minutes

Name:

1	
2	
3	
4	

1. Prove that the dot product on \mathbb{C}^{2}

$$
\left(z_{1}, z_{2}\right) \cdot\left(w_{1}, w_{2}\right)=z_{1} w_{1}+z_{2} w_{2}
$$

is not an inner product.
2. Let V be a finite-dimensional complex inner product space. Prove or disprove: an isometry of V has an eigenbasis.
3. Let T be the transformation of \mathbb{R}^{2} given, with respect to the standard basis, by

$$
\left(\begin{array}{cc}
2 & 1 \\
-2 & -1
\end{array}\right)
$$

Prove that T is not an orthogonal projection with respect to the dot product on \mathbb{R}^{2}. (Hint: what is the relation between the kernel and image of an orthogonal projection?)
4. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given, with respect to the standard basis, by the matrix

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) .
$$

(a) Prove that T is positive semidefinite (with respect to the dot product) and invertible.
(b) Define a new inner product on \mathbb{R}^{2} by

$$
\langle v, w\rangle_{T}=v \cdot T w
$$

(On a homework question you already showed that this is an inner product.) Let $\|\cdot\|_{T}$ be the norm for $\langle\cdot, \cdot\rangle_{T}$. The norm $\|\cdot\|_{T}$ gives a new distance function on \mathbb{R}^{2}. Using $\|\cdot\|_{T}$ to measure distance, find the point on the x-axis closest to $(1,1)$.

