- 1. In \mathbb{R}^2 with the usual distance, find the point on the line 3x + 4y = 0 closest to the point (7, 1).
- 2. Let

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Show that

$$\langle x, y \rangle := x \cdot A y$$

is not an inner product on \mathbb{R}^2 .

- 3. Let V be a finite-dimensional complex inner product space. A transformation $T: V \to V$ is called skew-adjoint if $T^* = -T$.
 - (a) Prove that the eigenvalues of skew-adjoint transformations on V are purely imaginary (i.e., real multiples of i).
 - (b) Prove that skew-adjoint transformations on V are diagonalizable.
- 4. Consider \mathbb{R}^2 with the dot product. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be self-adjoint. Prove that

$$\min_{\|v\|=1} \|Tv\|$$

is the absolute value of the smallest eigenvalue of T. (Here $\min_{\|v\|=1} \|Tv\|$ is the smallest value of $\|Tv\|$ on the set of vectors v of norm 1.)