1. In \mathbb{R}^{2} with the usual distance, find the point on the line $3 x+4 y=0$ closest to the point $(7,1)$.
2. Let

$$
A=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Show that

$$
\langle x, y\rangle:=x \cdot A y
$$

is not an inner product on \mathbb{R}^{2}.
3. Let V be a finite-dimensional complex inner product space. A transformation $T: V \rightarrow V$ is called skew-adjoint if $T^{*}=-T$.
(a) Prove that the eigenvalues of skew-adjoint transformations on V are purely imaginary (i.e., real multiples of i).
(b) Prove that skew-adjoint transformations on V are diagonalizable.
4. Consider \mathbb{R}^{2} with the dot product. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be self-adjoint. Prove that

$$
\min _{\|v\|=1}\|T v\|
$$

is the absolute value of the smallest eigenvalue of T. (Here $\min _{\|v\|=1}\|T v\|$ is the smallest value of $\|T v\|$ on the set of vectors v of norm 1.)

