Math 110 Midterm 2 July 26, 2018 50 Minutes

Name:_____

1	
2	
3	
4	

1. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given, with respect to the standard basis, by

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

With respect to the dot product on \mathbb{R}^3 , what is the adjoint of T?

(b) Is TT^* self-adjoint?

2. Let $T: V \to V$ be a normal operator on a complex inner product space whose eigenvalues λ satisfy $|\lambda| < 1$. Prove that $||Tv|| \le ||v||$ for all $v \in V$. 3. (a) Let V be a real inner product space. Prove that

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2).$$

(b) Prove that there does not exist an inner product on \mathbb{R}^2 such that $||(a,b)|| = \max(|a|,|b|)$ for $(a,b) \in \mathbb{R}^2$. Here $\max(|a|,|b|)$ means the larger of |a| or |b|.

4. Consider \mathbb{R}^4 with the dot product. Let U be the span of

$$\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}.$$

What is the orthogonal projection of (1, 2, 1, 4) onto U?