Math 110 Midterm 2

July 26, 2018
50 Minutes

Name:

1	
2	
3	
4	

1. (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given, with respect to the standard basis, by

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

With respect to the dot product on \mathbb{R}^{3}, what is the adjoint of T ? (b) Is $T T^{*}$ self-adjoint?
2. Let $T: V \rightarrow V$ be a normal operator on a complex inner product space whose eigenvalues λ satisfy $|\lambda|<1$. Prove that $\|T v\| \leq\|v\|$ for all $v \in V$.
3. (a) Let V be a real inner product space. Prove that

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\left(\|v\|^{2}+\|w\|^{2}\right) .
$$

(b) Prove that there does not exist an inner product on \mathbb{R}^{2} such that $\|(a, b)\|=\max (|a|,|b|)$ for $(a, b) \in \mathbb{R}^{2}$. Here $\max (|a|,|b|)$ means the larger of $|a|$ or $|b|$.
4. Consider \mathbb{R}^{4} with the dot product. Let U be the span of

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

What is the orthogonal projection of $(1,2,1,4)$ onto U ?

