Math 110 Midterm 1 (SOLUTIONS)

1. $S \circ T=0 \Leftrightarrow S(T(v))=0 \forall v \in V \Leftrightarrow T(v) \in \operatorname{ker}(S) \forall v \in V \Leftrightarrow \operatorname{im}(T) \subset$ $\operatorname{ker}(S)$.
2. Solution 1: Let V be the vector space of polynomials of degree less than or equal to $n-1$. Since $\operatorname{dim}(V)=n$, the n linearly independent vectors

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \cdots,\left(\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
\vdots \\
x_{n}^{n-1}
\end{array}\right)
$$

form a basis. Therefore given $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$ there are unique elements $a_{i} \in \mathbb{F}$ such that

$$
a_{0}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+a_{1}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\cdots+a_{n-1}\left(\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
\vdots \\
x_{n}^{n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

Set $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$. Then $p\left(x_{i}\right)=y_{i}$ for each i. The uniqueness of the a_{i} show that p is unique. In more words: suppose that there were two polynomials p and q of degree less than or equal to n such that $p\left(x_{i}\right)=y_{i}$ and $q\left(x_{i}\right)=y_{i}$. Then $p\left(x_{i}\right)-q\left(x_{i}\right)=0$ for all i. Write

$$
p(x)-q(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n-1} x^{n-1}
$$

Then

$$
b_{0}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+b_{1}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\cdots+b_{n-1}\left(\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
\vdots \\
x_{n}^{n-1}
\end{array}\right)=0
$$

By the linear independence assumption, all of the b_{i} s must be 0 , so $p=q$.
Solution 2: Build a matrix

$$
M=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

Let

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

An element in $\operatorname{ker}(M)$ provides a linear relation amongst the columns

$$
M a=a_{0}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+a_{1}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\cdots+a_{n-1}\left(\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
\vdots \\
x_{n}^{n-1}
\end{array}\right)
$$

where

$$
a=\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) .
$$

Therefore, by the linear independence assumption, M is injective. By rank-nullity, M must be surjective as well, so the equation

$$
M a=y
$$

has a solution for some $a \in \mathbb{F}^{n}$. If $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is this solution,

$$
a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\cdots+a_{n-1} x_{i}^{n-1}=y_{i}
$$

for all i.
Uniqueness is more or less the same proof as in Solution 1.
3. T is diagonalizable if and only if it has a basis of eigenvectors. I will show that all the eigenvectors of T lie on a single line and therefore cannot $\operatorname{span} \mathbb{R}^{2}$. Let $\binom{a}{b}$ be an eigenvector for T. Then

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b}
$$

so

$$
\binom{0}{a}=\binom{\lambda a}{\lambda b} .
$$

If $\lambda \neq 0$, then these two equations show that $a=0$ and $b=a / \lambda=0$. This cannot be the case since eigenvectors are nonzero. Therefore $\lambda=0$, and so $a=0$. Therefore all eigenvectors lie on the 1-dimensional subspace of vectors

$$
\binom{0}{b} .
$$

4. The linear transformation T from the last question gives an example where $V \neq \operatorname{ker}(T) \oplus \operatorname{im}(T)$. Since $\operatorname{ker}(T)=\operatorname{Span}\left(e_{2}\right)=\operatorname{im}(T)$, then $\operatorname{ker}(T) \cap \operatorname{im}(T) \neq\{0\}$ so the sum $\operatorname{ker}(T)+\operatorname{im}(T)$ cannot be direct.
