Math 110 Practice Midterm 2

1. Prove or disprove:

$$\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix}$$

is a basis of \mathbb{R}^2 .

- 2. (a) Let $T: V \to W$ be a linear map. Prove that $\dim(\operatorname{im}(T)) \leq \dim(W)$.
 - (b) Let $T: V \to W$ be a linear map. Prove that $\dim(\operatorname{im}(T)) \leq \dim(V)$.
- 3. Let V be a vector space and U, U', W subspaces. Prove or disprove: if $V = U \oplus W$ and $V = U' \oplus W$ then U = U'.
- 4. Recall that the space of $m \times n$ matrices is a vector space with addition $(M + N)_{ij} := M_{ij} + N_{ij}$ and scalar multiplication $(cM)_{ij} = cM_{ij}$. If M is a matrix, its transpose M^{\top} is the matrix defined by $M_{ij}^{\top} = M_{ji}$.

An $n \times n$ matrix is symmetric if $M^{\top} = M$.

- (a) Prove that $n \times n$ symmetric matrices form a subspace of the space of $n \times n$ matrices.
- (b) Find a basis for the space of $n \times n$ symmetric matrices.
- 5. Find a linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T^2 \neq 0$ but $T^3 = 0$.