Math 110 Practice Midterm 2

1. Prove or disprove:

$$
\binom{1}{2},\binom{2}{1}
$$

is a basis of \mathbb{R}^{2}.
2. (a) Let $T: V \rightarrow W$ be a linear map. Prove that $\operatorname{dim}(\operatorname{im}(T)) \leq$ $\operatorname{dim}(W)$.
(b) Let $T: V \rightarrow W$ be a linear map. Prove that $\operatorname{dim}(\operatorname{im}(T)) \leq \operatorname{dim}(V)$.
3. Let V be a vector space and U, U^{\prime}, W subspaces. Prove or disprove: if $V=U \oplus W$ and $V=U^{\prime} \oplus W$ then $U=U^{\prime}$.
4. Recall that the space of $m \times n$ matrices is a vector space with addition $(M+N)_{i j}:=M_{i j}+N_{i j}$ and scalar multiplication $(c M)_{i j}=c M_{i j}$. If M is a matrix, its transpose M^{\top} is the matrix defined by $M_{i j}^{\top}=M_{j i}$.
An $n \times n$ matrix is symmetric if $M^{\top}=M$.
(a) Prove that $n \times n$ symmetric matrices form a subspace of the space of $n \times n$ matrices.
(b) Find a basis for the space of $n \times n$ symmetric matrices.
5. Find a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T^{2} \neq 0$ but $T^{3}=0$.

