Math 110 Practice Midterm 1

1. Prove or disprove: there exists a vector space V with three subspaces U_{1}, U_{2}, U_{3} such that $U_{1} \cap U_{2}, U_{2} \cap U_{3}$ and $U_{3} \cap U_{1}$ are all nonzero but $U_{1} \cap U_{2} \cap U_{3}=\{0\}$.
2. Let V be a vector space and let n be a positive integer. Show that the following conditions are equivalent

- $\operatorname{dim}(V) \leq n$
- Any collection of more than n vectors in V is linearly dependent.

3. Let V be a finite-dimensional vector space. Let W be a subspace of V. Prove that there exists a subspace U of V such that $V=U \oplus W$.
4. Let V be a finite-dimensional vector space and U a subspace. Define the set V / U to be the set of subsets of V of the form $v+U$ for some $v \in V$. V / U is a vector space with addition

$$
(v+U)+(w+U):=(v+w+U), v, w \in V
$$

and scalar multiplication

$$
c(v+U):=c v+U, c \in \mathbb{F}, v \in V
$$

(a) What is the element 0 (the additive identity) in V / U ?
(b) Prove that $\operatorname{dim}(V / U)=\operatorname{dim}(V)-\operatorname{dim}(U)$. (Hint: use a linear map $V \rightarrow V / U$.)

