
Math 110 Midterm 1
July 10, 2018
50 Minutes
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1. (10 points) Let T : V → W and S : W → U be linear maps. Prove that
S ◦ T = 0 if and only if im(T ) ⊂ ker(S).
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2. (10 points) Let x1, . . . , xn and y1, . . . , yn be elements of F. Suppose that
the following n vectors in Fn are linearly independent:
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Prove that there exists a unique polynomial p of degree less than or equal
to n − 1 with coefficients in F such that p(xi) = yi for all i. (Hint: use
the vector (y1, y2, . . . , yn) as well as the above n vectors.)
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3. (10 points) Let T : R2 → R2 be the linear map represented, with respect
to the standard basis vectors, by the matrix(

0 0
1 0

)
.

Prove or disprove: T is diagonalizable.
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4. (10 points) Let T : V → V be a linear map. Prove or disprove: V =
ker(T )⊕ im(T ).
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