Math 110 Midterm 1 July 10, 2018 50 Minutes

Name:_____

1	
2	
3	
4	

1. (10 points) Let $T: V \to W$ and $S: W \to U$ be linear maps. Prove that $S \circ T = 0$ if and only if $im(T) \subset ker(S)$.

2. (10 points) Let x_1, \ldots, x_n and y_1, \ldots, y_n be elements of \mathbb{F} . Suppose that the following *n* vectors in \mathbb{F}^n are linearly independent:

$$\begin{pmatrix} 1\\1\\1\\1\\\vdots\\1 \end{pmatrix}, \begin{pmatrix} x_1\\x_2\\x_3\\\vdots\\x_n \end{pmatrix}, \begin{pmatrix} x_1^2\\x_2^2\\x_3^2\\\vdots\\x_n^2 \end{pmatrix}, \begin{pmatrix} x_1^3\\x_2^3\\x_3^3\\\vdots\\x_n^3 \end{pmatrix}, \cdots, \begin{pmatrix} x_1^{n-1}\\x_2^{n-1}\\x_3^{n-1}\\\vdots\\x_n^{n-1} \end{pmatrix}.$$

Prove that there exists a unique polynomial p of degree less than or equal to n-1 with coefficients in \mathbb{F} such that $p(x_i) = y_i$ for all i. (Hint: use the vector (y_1, y_2, \ldots, y_n) as well as the above n vectors.)

3. (10 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map represented, with respect to the standard basis vectors, by the matrix

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Prove or disprove: T is diagonalizable.

4. (10 points) Let $T: V \to V$ be a linear map. Prove or disprove: $V = \ker(T) \oplus \operatorname{im}(T)$.