Math 110 Midterm 1

July 10, 2018
50 Minutes

Name:

1	
2	
3	
4	

1. (10 points) Let $T: V \rightarrow W$ and $S: W \rightarrow U$ be linear maps. Prove that $S \circ T=0$ if and only if $\operatorname{im}(T) \subset \operatorname{ker}(S)$.
2. (10 points) Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be elements of \mathbb{F}. Suppose that the following n vectors in \mathbb{F}^{n} are linearly independent:

$$
\left(\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right),\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right), \quad\left(\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{3}^{2} \\
\vdots \\
x_{n}^{2}
\end{array}\right), \quad\left(\begin{array}{c}
x_{1}^{3} \\
x_{2}^{3} \\
x_{3}^{3} \\
\vdots \\
x_{n}^{3}
\end{array}\right), \cdots,\left(\begin{array}{c}
x_{1}^{n-1} \\
x_{2}^{n-1} \\
x_{3}^{n-1} \\
\vdots \\
x_{n}^{n-1}
\end{array}\right) .
$$

Prove that there exists a unique polynomial p of degree less than or equal to $n-1$ with coefficients in \mathbb{F} such that $p\left(x_{i}\right)=y_{i}$ for all i. (Hint: use the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ as well as the above n vectors.)
3. (10 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map represented, with respect to the standard basis vectors, by the matrix

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Prove or disprove: T is diagonalizable.
4. (10 points) Let $T: V \rightarrow V$ be a linear map. Prove or disprove: $V=$ $\operatorname{ker}(T) \oplus \operatorname{im}(T)$.

