Math 110 Homework 6 (SOLUTIONS)

1. Suppose the matrix is $n \times n$. Doing the determinants explicitly for the cases $n=1,2,3,4$ suggests that the determinant of the $n \times n$ case is $n+1$. This can be proved using induction. Let d_{n} denote the determinant for the $n \times n$ case. Suppose that $d_{k}=k+1$ for $k \leq n-1$. We'd like to prove that $d_{n}=n+1$. Take the determinant of the $n \times \mathrm{n}$ matrix by expanding down the first column

$$
d_{n}=2 d_{n-1}+\operatorname{det}\left(\begin{array}{cccccc}
-1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \ddots & 0 & 0 \\
0 & 0 & -1 & \ddots & -1 & 0 \\
\vdots & \vdots & \vdots & \ddots & 2 & -1 \\
0 & 0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

Expanding down the first column of this second determinant then shows that

$$
d_{n}=2 d_{n-1}-d_{n-2}=2 n-(n-1)=n+1
$$

2. (a) Each term in the monomial is $M_{a b}$ where σ maps b to a. These terms can written as $M_{\sigma(i) i}$ or as $M_{j \sigma^{-1}(j)}$ so

$$
\prod_{i=1}^{n} M_{\sigma(i) i}=\prod_{j=1}^{n} M_{j \sigma^{-1}(j)}
$$

(b) Summing over the set of $\sigma \in S_{n}$ is the same as summing over the set of σ^{-1} in S_{n} since each permutation is the inverse of some permutation.
(c)

$$
\begin{gathered}
\operatorname{det}\left(M^{\top}\right)=\sum_{\sigma} \operatorname{sign}(\sigma) M_{\sigma(1) 1}^{\top} \cdots M_{\sigma(n) n}^{\top}=\sum_{\sigma} \operatorname{sign}(\sigma) M_{1 \sigma(1)} \cdots M_{n \sigma(n)} \\
=\sum_{\sigma} \operatorname{sign}(\sigma) M_{\sigma^{-1}(1) 1} \cdots M_{\sigma^{-1}(n) n} \\
=\sum_{\sigma^{-1}} \operatorname{sign}\left(\sigma^{-1}\right) M_{\sigma(1) 1} \cdots M_{\sigma(n) n} \\
=\sum_{\sigma^{-1}} \operatorname{sign}(\sigma) M_{\sigma(1) 1} \cdots M_{\sigma(n) n} \\
=\sum_{\sigma} \operatorname{sign}(\sigma) M_{\sigma(1) 1} \cdots M_{\sigma(n) n} \\
=\operatorname{det}(M)
\end{gathered}
$$

where the third equality is part (a), the fourth equality is a change of variables σ to σ^{-1}, the fifth is the fact that $\operatorname{sign}(\sigma)=\operatorname{sign}\left(\sigma^{-1}\right)$, and the sixth is part (b).
3. Since M has orthonormal columns, that means it sends the orthonormal basis e_{1}, \ldots, e_{n} to the orthonormal basis $M e_{1}, \ldots, M e_{n}$. Therefore M is an isometry, so $M^{-1}=M^{\top}$. Therefore $\operatorname{det}(M)=\operatorname{det}\left(M^{-1}\right)$. But $\operatorname{det}(M) \operatorname{det}\left(M^{-1}\right)=1$, so $\operatorname{det}(M)^{2}=1$. Therefore $\operatorname{det}(M)= \pm 1$.
4. The characteristic polynomial is

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ccc}
t-6 & -6 & -1 \\
1 & t+1 & 1 \\
6 & 6 & t+1
\end{array}\right) \\
=(t-6) \operatorname{det}\left(\begin{array}{cc}
t+1 & 1 \\
6 & t+1
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
-6 & -1 \\
6 & t+1
\end{array}\right)+6 \operatorname{det}\left(\begin{array}{cc}
-6 & -1 \\
t+1 & 1
\end{array}\right) \\
=(t-6)\left[(t+1)^{2}-6\right]-[-6(t+1)+6]+6[-6+t+1] \\
=(t-6)\left(t^{2}+2 t-5\right)+12 t-30 \\
=t^{3}-4 t^{2}-5 t=t(t-5)(t+1)
\end{gathered}
$$

Therefore the eigenvalues are 0,5 , and -1 .
5. let $\lambda_{1}, \ldots, \lambda_{n}$ be the diagonal entries of the Jordan form for M. Then $\operatorname{det}(t I-M)=\prod_{i=1}^{n}\left(t-\lambda_{i}\right)$. If $\operatorname{det}(t I-M)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}$ then a_{k} is $(-1)^{k}$ times the sum over all products of $n-k$ distinct elements in $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. For example

$$
\begin{gathered}
t_{n}=1 \\
t_{n-1}=-\left(\lambda_{1}+\cdots+\lambda_{n}\right) \\
t_{n-2}=\sum_{i<j} \lambda_{i} \lambda_{j} \\
t_{n-3}=-\sum_{i<j<k} \lambda_{i} \lambda_{j} \lambda_{k} \\
\vdots \\
t_{0}=(-1)^{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n} .
\end{gathered}
$$

