Math 110 Homework 4 (SOLUTIONS)

1. (a) (u+v,u—v) = (u,u) — (u,v) + (v,u) — (v,v). Since this a real

inner product space, (u,v) = (v,u) so this is ||u|* — ||v]|*.

(b) This follows from part (a)

(c) Let ABCD be the vertices of the rhombus. Let B—A = wand D—A
be v. Then the diagonals are described by the vectors D—B = u—v
and C'— A = u + v. Since the sides of a rhombus are all the same
length, |lul|* = ||v||* so by part (a) (u—v,u+v) = 0. Therefore the
diagonals are orthogonal. In R? with the dot product, orthogonal
vectors are perpendicular (at right angles).

2. The condition ||u|| < ||u+ av|| is the same as ||ul|* < |Ju + av||* and

lu+ avl® = [Jull® + (u, av) + {av, u) + [lav]*

= [[ull® + afu, v) + afu, v) + |af*||v]*
= [[ull* + 2Re(afu, v)) + |af*||v]|*.
Therefore ||ul| < ||u+ av|| for all a € F if and only if

0 < |al*||v]|* + 2Re(a(u, v)).

If (u,v) = 0 then of course this is true. The tricky part is the converse.
Suppose that (u,v) # 0 and that

0 < |a[|v]1* + 2Re(a(u, v))

foralla € F. If ||v|| = 0, then v = 0 and (u, v) holds trivially. Otherwise,

set a = —ﬁ. Then

0 < [{u, 0)* = 2[{u, v)|* = —[{u, v)|*

which can only occur if (u,v) = 0.

3. This is Cauchy-Schwarz in R”. Set
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Then (v, u)? < ||v|?||u||* translates into

(21 4+ +an)? <n(?+- - +a2).



4. Put the top of the triangle at the origin and let v and w be vectors
representing the two sides of lengths a and b. Reflect the triangle across
the side of length ¢ to form a parallelogram. Then one sees that |[v+w|| =
2d. Since ||v — w|| = ¢, then
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a’ + b = 502 + 2d°.

v = (3,6,0), ve = (1,2, 2).
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A vector (a, b, c) is orthogonal to both v; and vy if
3a+6b=0and a+ 20+ 2c = 0.

These two imply that ¢ = 0 and @ = —2b so W is the set of vectors
of the form (—2b,b,0) for all b € R. A basis is the vector (-2, 1,0).

Apply Gram-Schmidt to v; = 1, v, = z, and v3 = 22. Note that 1
is already normalized,
1
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Therefore the orthonormal basis is
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You could keep on applying Gram-Schmidt to z*, 2%, 2%, ... to get

an infinite linearly independent subset of W+. Therefore W+ is
infinite-dimensional.
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