Math 110 Homework 4

Due Tuesday July 17, 2018
Covers Material from Axler sections 6.A, 6.B

1. Axler 6.A 4
2. Axler 6.A 6
3. Axler 6.A 12
4. Axler 6.A 31
5. (a) Equip \mathbb{R}^{3} with the dot product. Use Gram-Schmidt to find an orthonormal basis for

$$
W:=\operatorname{Span}\left(\left(\begin{array}{l}
3 \\
6 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)\right)
$$

Does the resulting orthonormal basis depend on which vector you pick first?
(b) Find a basis for W^{\perp}.
6. (a) Let V be the vector space of real-valued continuous functions on the interval $[0,1]$. Equip V with the L^{2} inner product:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find an orthonormal basis for $W:=\operatorname{Span}\left(1, x, x^{2}\right) \subset V$.
(b) What is $\operatorname{dim}\left(W^{\perp}\right)$?
(c) Consider the restriction of the function $f(x)=x^{3}$ to $[0,1]$. What is the projection of f to W ? With the aid of a computer (for example Wolfram Alpha), sketch a graph comparing f with its projection to W.

