## Math 110 Homework 3 (SOLUTIONS)

1. Let $w \in \operatorname{im}(S)$. Then $w=S(v)$ for some $v$. $T(w)=T(S(v))=$ $S(T(v)) \in \operatorname{im}(S)$.
2. Let $(w, z)$ be an eigenvector. Then

$$
\binom{z}{w}=\lambda\binom{w}{z}
$$

so $z=\lambda^{2} z$. If $z=0$ then $w=0$, but eigenvectors must be nonzero. Therefore $z \neq 0$ and $\lambda= \pm 1$. If $\lambda=1$, then $(w, w)$ is an eigenvector for $w \neq 0$. If $\lambda=-1$ then $(w,-w)$ is an eigenvector for $w \neq 0$.
3. Consider the vector $v-T(v)$. Then

$$
T(v-T(v))=T(v)-v=-(v-T(v))
$$

so that $v-T(v)$ is either 0 or an eigenvector with eigenvalue -1 . Since $T$ has no such eigenvectors $v-T(v)=0$. Therefore $T(v)=v$.
4. (a) Induction: $T(0,1)=(1,1)$ and assume that $T^{n}(0,1)=\left(F_{n}, F_{n+1}\right)$ Then $T^{n+1}(0,1)=\left(F_{n+1}, F_{n+1}+F_{n}\right)=\left(F_{n+1}, F_{n+2}\right)$.
(b) An eigenvector must satisfy

$$
T\binom{a}{b}=\lambda\binom{a}{b}
$$

so

$$
\binom{b}{a+b}=\binom{\lambda a}{\lambda b} .
$$

Either $a=b=0$ or $a \neq 0$ and $a+\lambda a=\lambda^{2} a$ so $1+\lambda=\lambda^{2}$. Solving for $\lambda$ produces two solutions

$$
\phi:=\frac{1+\sqrt{5}}{2}, \psi:=\frac{1-\sqrt{5}}{2} .
$$

(c) From the last part, the eigen vectors are of the form $(a, \lambda a)$ for any nonzero $a$. Therefore $(1, \phi)$ and $(1, \psi)$ form an eigenbasis (they're linearly independent since they correspond to different eigenvalues).
(d) Note that $T^{n}(1, \phi)=\phi^{n}(1, \phi)$ and $T^{n}(1, \psi)=\psi^{n}(1, \psi)$. Write

$$
\binom{0}{1}=a\binom{1}{\phi}+b\binom{1}{\psi}
$$

for some $a, b$. It is not hard to see that

$$
a=\frac{1}{\sqrt{5}}, b=-\frac{1}{\sqrt{5}}
$$

. Therefore

$$
\begin{gathered}
\binom{0}{1}=\frac{1}{\sqrt{5}}\left(\binom{1}{\phi}-\binom{1}{\psi}\right) \\
\Rightarrow T^{n}\binom{0}{1}=\frac{1}{\sqrt{5}}\left(T^{n}\binom{1}{\phi}-T^{n}\binom{1}{\psi}\right)=\frac{1}{\sqrt{5}}\left(\phi^{n}\binom{1}{\phi}-\psi^{n}\binom{1}{\psi}\right) .
\end{gathered}
$$

Looking at the first coordinate and using part (a) shows that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\psi^{n}\right)
$$

(e) Since $\frac{|\psi|^{n}}{\sqrt{5}}<\frac{1}{2}$, the closest integer to $F_{n}$ is $\frac{\phi^{n}}{\sqrt{5}}$.
6. Want to solve

$$
\frac{d^{2} u}{d x^{2} u}=\lambda u
$$

Let

$$
u=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

Then

$$
\frac{d^{2} u}{d x^{2}}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots
$$

Comparing coefficients of the powers of $x$ shows that

$$
\begin{gathered}
2 a_{2}=\lambda a_{0} \\
6 a_{3}=\lambda a_{1} \\
12 a_{4}=\lambda a_{2} \\
\vdots \\
n(n-1) a_{n}=\lambda a_{n-2} .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
a_{n}=\frac{\lambda a_{n-2}}{n(n-1)}=\frac{\lambda^{2} a_{n-4}}{n(n-1)(n-2)(n-3)}=\cdots \\
\Rightarrow a_{2 m}=\frac{\lambda^{m} a_{0}}{(2 m)!}, a_{2 m+1}=\frac{\lambda^{m} a_{1}}{(2 m+1)!}
\end{gathered}
$$

so that

$$
u=a_{0}+a_{1} x+\frac{\lambda a_{0} x^{2}}{2!}+\frac{\lambda a_{1} x^{3}}{3!}+\frac{\lambda^{2} a_{0} x^{4}}{4!}+\frac{\lambda^{2} a_{1} x^{5}}{5!}+\cdots .
$$

A basis for the $\lambda$ eigenspace is therefore given by the following two power series

$$
1+\frac{\lambda x^{2}}{2!}+\frac{\lambda^{2} x^{4}}{4!}+\cdots=\sum_{m=0}^{\infty} \frac{\lambda^{m} x^{2 m}}{(2 m)!}
$$

$$
x+\frac{\lambda x^{3}}{3!}+\frac{\lambda^{2} x^{5}}{5!}+\cdots=\sum_{m=0}^{\infty} \frac{\lambda^{m} x^{2 m+1}}{(2 m+1)!} .
$$

Therefore there's an eigenspace of dimension 2 for each $\lambda \in \mathbb{R}$. For the $\lambda=-1$ eigenspace, the Taylor series for $\sin$ and $\cos$ about $x=0$ form a basis.

