
Math 110 Homework 2 SOLUTIONS

1. Let (u1, . . . , un) be a basis for U and (w1, . . . , wm) a basis for W . If U+W
is a direct sum, then any vector in U + W can be written uniquely as
u+ w where u ∈ U and w ∈ W . It therefore can be written uniquely as
a1u1 + · · · anun + b1w1 + · · ·+ bmwm. Therefore (u1, . . . , un, w1, . . . , wm)
is a basis of U +W if U +W is a direct sum.

If U ∩ W = {0} then U + W is a direct sum. If U and W are both
dimension 5, then by the last paragraph U ∩ W = {0} implies that
U +W has dimension 10.

You cannot have a 10-dimensional subspace of R9, since a basis for any
subspace can be extended to a basis of the whole space.

2. Let V = R2 and consider the three 1-dimensional subspaces U1 :=
Span(e1), U2 := Span(e2), and U3 := Span(e1 +e2). Then U1 +U2 +U3 =
R2 so

dim(U1 + U2 + U3) = 2.

Each intersection Ui ∩ Uj is the zero subspace, so

dim(U1)+dim(U2)+dim(U3)−dim(U1∩U2)−dim(U2∩U3)−dim(U3∩U1)+dim(U1∩U2∩U3)

= 1 + 1 + 1− 0− 0− 0− 0 = 3.

This provides a counterexample.

3. Let (u1, . . . , uk) be a basis of U . Extend this to a basis of V : (u1, . . . , uk, vk+1, . . . , vn).
A linear map is determined by where it sends basis vectors. Define
T (ui) = S(ui) and T (vj) = 0. Then for u = a1u1 + · · ·+ akuk,

T (u) = a1T (u1) + · · ·+ akT (uk) = a1S(u1) + · · ·+ akS(uk) = S(u).

4. Suppose T is a scalar multiple of the identity matrix. Then TS(v) =
c idV S(v) = cS(v) = S(cv) = S(c idV (v)) = ST (v). This proves one
direction.

To prove the other direction, suppose that T is such that TS = ST
for all S ∈ L(V, V ). After fixing a basis (v1, . . . , vn) of V let M be the
matrix representing T . It is enough to show that if MN = NM for all
n× n matrices N then M is a scalar multiple of the identity matrix.

Let E(i, j) be the n × n matrix which is filled with zeroes except for a
single 1 in the ijth entry. Note that E(i, j)M is the matrix whose ith
row is the jth row of M , and all other rows are zero:

(E(i, j)M)`k =
n∑

p=1

E(i, j)`pMpk =

{
Mjk ` = i

0 otherwise
.
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Similarly, ME(i, j) is the matrix whose jth column is the ith column of
M , and all other columns are 0.

Suppose that M is such that MN = NM for all n×n matrices N . Then
in particular ME(i, j) = E(i, j)M for all i, j. The equation ME(i, i) =
E(i, i)M shows that the ith row of M must 0 except for the ith position
and the ith column must be 0 except for the ith position. Therefore
M must be diagonal. Let (λ1, . . . , λn) be the diagonal entries of M .
Then ME(i, j) = λiE(i, j) and E(i, j)M = λjE(i, j), so all the diagonal
entries must be the same.

Therefore M is a scalar multiple of the identity matrix. The linear
transformation it represents is a scalar multiple of the identity.

5. In class I showed that dimL(V,W ) = (dimV )(dimW ). Therefore dim(L(F, V )) =
(dimF)(dimV ) = dimV . Since L(F, V ) and V have the same dimension,
they are isomorphic.

6. Let

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann



x =


x1
x2
...
xn



c =


c1
c2
...
cn

 .

Think of the matrix A a linear map from Fn to itself. The equation in
(a) can be restated as x ∈ ker(A) ⇒ x = 0, which is equivalent to A
being injective. The equation in (b) can be restated as: given c ∈ Fn

there exists x ∈ Fn such that Ax = c, which is the statement that A is
surjective.

If A : Fn → Fn, surjective implies injective and injective implies sur-
jective. If A is surjective, then dim(im(A)) = n so rank-nullity implies
that dim(ker(A)) = 0 which implies that A is injective. If A is injective,
then dim(ker(A)) = 0 so rank-nullity implies that dim(im(A)) = n which
implies that A is surjective.

Therefore since (a) is the statement that A is injective and (b) is the
statement that A is surjective, one implies the other.
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