Math 110 Homework 2 SOLUTIONS

1. Let $\left(u_{1}, \ldots, u_{n}\right)$ be a basis for U and $\left(w_{1}, \ldots, w_{m}\right)$ a basis for W. If $U+W$ is a direct sum, then any vector in $U+W$ can be written uniquely as $u+w$ where $u \in U$ and $w \in W$. It therefore can be written uniquely as $a_{1} u_{1}+\cdots a_{n} u_{n}+b_{1} w_{1}+\cdots+b_{m} w_{m}$. Therefore $\left(u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{m}\right)$ is a basis of $U+W$ if $U+W$ is a direct sum.
If $U \cap W=\{0\}$ then $U+W$ is a direct sum. If U and W are both dimension 5, then by the last paragraph $U \cap W=\{0\}$ implies that $U+W$ has dimension 10 .

You cannot have a 10 -dimensional subspace of \mathbb{R}^{9}, since a basis for any subspace can be extended to a basis of the whole space.
2. Let $V=\mathbb{R}^{2}$ and consider the three 1-dimensional subspaces $U_{1}:=$ $\operatorname{Span}\left(e_{1}\right), U_{2}:=\operatorname{Span}\left(e_{2}\right)$, and $U_{3}:=\operatorname{Span}\left(e_{1}+e_{2}\right)$. Then $U_{1}+U_{2}+U_{3}=$ \mathbb{R}^{2} so

$$
\operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right)=2
$$

Each intersection $U_{i} \cap U_{j}$ is the zero subspace, so

$$
\begin{gathered}
\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)+\operatorname{dim}\left(U_{3}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)-\operatorname{dim}\left(U_{2} \cap U_{3}\right)-\operatorname{dim}\left(U_{3} \cap U_{1}\right)+\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right) \\
=1+1+1-0-0-0-0=3 .
\end{gathered}
$$

This provides a counterexample.
3. Let $\left(u_{1}, \ldots, u_{k}\right)$ be a basis of U. Extend this to a basis of $V:\left(u_{1}, \ldots, u_{k}, v_{k+1}, \ldots, v_{n}\right)$. A linear map is determined by where it sends basis vectors. Define $T\left(u_{i}\right)=S\left(u_{i}\right)$ and $T\left(v_{j}\right)=0$. Then for $u=a_{1} u_{1}+\cdots+a_{k} u_{k}$,

$$
T(u)=a_{1} T\left(u_{1}\right)+\cdots+a_{k} T\left(u_{k}\right)=a_{1} S\left(u_{1}\right)+\cdots+a_{k} S\left(u_{k}\right)=S(u)
$$

4. Suppose T is a scalar multiple of the identity matrix. Then $T S(v)=$ $c \mathrm{id}_{V} S(v)=c S(v)=S(c v)=S\left(c \operatorname{id}_{V}(v)\right)=S T(v)$. This proves one direction.
To prove the other direction, suppose that T is such that $T S=S T$ for all $S \in \mathcal{L}(V, V)$. After fixing a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V let M be the matrix representing T. It is enough to show that if $M N=N M$ for all $n \times n$ matrices N then M is a scalar multiple of the identity matrix.
Let $E(i, j)$ be the $n \times n$ matrix which is filled with zeroes except for a single 1 in the $i j$ th entry. Note that $E(i, j) M$ is the matrix whose i th row is the j th row of M, and all other rows are zero:

$$
(E(i, j) M)_{\ell k}=\sum_{p=1}^{n} E(i, j)_{\ell p} M_{p k}= \begin{cases}M_{j k} & \ell=i \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, $M E(i, j)$ is the matrix whose j th column is the i th column of M, and all other columns are 0 .
Suppose that M is such that $M N=N M$ for all $n \times n$ matrices N. Then in particular $M E(i, j)=E(i, j) M$ for all i, j. The equation $M E(i, i)=$ $E(i, i) M$ shows that the i th row of M must 0 except for the i th position and the i th column must be 0 except for the i th position. Therefore M must be diagonal. Let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the diagonal entries of M. Then $M E(i, j)=\lambda_{i} E(i, j)$ and $E(i, j) M=\lambda_{j} E(i, j)$, so all the diagonal entries must be the same.
Therefore M is a scalar multiple of the identity matrix. The linear transformation it represents is a scalar multiple of the identity.
5. In class I showed that $\operatorname{dim} \mathcal{L}(V, W)=(\operatorname{dim} V)(\operatorname{dim} W)$. Therefore $\operatorname{dim}(\mathcal{L}(\mathbb{F}, V))=$ $(\operatorname{dim} \mathbb{F})(\operatorname{dim} V)=\operatorname{dim} V$. Since $\mathcal{L}(\mathbb{F}, V)$ and V have the same dimension, they are isomorphic.
6. Let

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & \cdots & A_{n n}
\end{array}\right) \\
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
c=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right) .
\end{gathered}
$$

Think of the matrix A a linear map from \mathbb{F}^{n} to itself. The equation in (a) can be restated as $x \in \operatorname{ker}(A) \Rightarrow x=0$, which is equivalent to A being injective. The equation in (b) can be restated as: given $c \in \mathbb{F}^{n}$ there exists $x \in \mathbb{F}^{n}$ such that $A x=c$, which is the statement that A is surjective.
If $A: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$, surjective implies injective and injective implies surjective. If A is surjective, then $\operatorname{dim}(\operatorname{im}(A))=n$ so rank-nullity implies that $\operatorname{dim}(\operatorname{ker}(A))=0$ which implies that A is injective. If A is injective, then $\operatorname{dim}(\operatorname{ker}(A))=0$ so rank-nullity implies that $\operatorname{dim}(\operatorname{im}(A))=n$ which implies that A is surjective.
Therefore since (a) is the statement that A is injective and (b) is the statement that A is surjective, one implies the other.

