Math 110 Homework 1 SOLUTIONS

1. Let W_{1} and W_{2} be two subspaces of V and suppose that one is not contained in the other. To show that $W_{1} \cup W_{2}$ is not a subspace, it is enough to find vectors $w_{1}, w_{2} \in W_{1} \cup W_{2}$ such that $w_{1}+w_{2} \notin W_{1} \cup W_{2}$. Since W_{1} is not contained in W_{2} there exists $w_{1} \in W_{1}$ which is not in W_{2}. Similarly there exists $w_{2} \in W_{2}$ which is not in W_{1}. Suppose that $w_{1}+w_{2}$ were in $W_{1} \cup W_{2}$. Then $w_{1}+w_{2}$ would be in either W_{1} or W_{2}. If it were in W_{1}, then $\left(w_{1}+w_{2}\right)-w_{1}=w_{2}$ would be in W_{1}, contradicing the assumption on w_{2}. Similarly, if $w_{1}+w_{2}$ were in W_{1}, then $\left(w_{1}+w_{2}\right)-w_{1}=w_{1}$ would be in W_{2}, contradicting the assumption on w_{1}. Thus $w_{1}+w_{2} \notin W_{1} \cup W_{2}$.
The other direction of the "if and only if" is much easier. If $W_{1} \subset W_{2}$, then $W_{1} \cup W_{2}=W_{2}$ and is thus a subspace. Similarly for $W_{2} \subset W_{1}$.
2. To show that $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, v_{4}\right\}$ spans V, you must show that given $v \in V$, you can write

$$
v=a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+a_{3}\left(v_{3}-v_{4}\right)+a_{4} v_{4}
$$

for some $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{F}$. Since $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ spans, then

$$
v=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+b_{4} v_{4}
$$

for some $b_{1}, b_{2}, b_{3}, b_{4} \in \mathbb{F}$. Define

$$
a_{1}:=b_{1}, a_{2}:=b_{1}+b_{2}, a_{3}:=b_{1}+b_{2}+b_{3}, a_{4}:=b_{1}+b_{2}+b_{3}+b_{4} .
$$

With these values

$$
\begin{gathered}
a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+a_{3}\left(v_{3}-v_{4}\right)+a_{4} v_{4} \\
=b_{1}\left(v_{1}-v_{2}\right)+\left(b_{1}+b_{2}\right)\left(v_{2}-v_{3}\right)+\left(b_{1}+b_{2}+b_{3}\right)\left(v_{3}-v_{4}\right)+\left(b_{1}+b_{2}+b_{3}+b_{4}\right) v_{4} . \\
=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3}+b_{4} v_{4}=v .
\end{gathered}
$$

3. To show that $\left\{v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, v_{4}\right\}$ is linearly independent, you have to show that
$a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+a_{3}\left(v_{3}-v_{4}\right)+a_{4} v_{4}=0 \Rightarrow\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=(0,0,0,0)$.
Suppose that

$$
a_{1}\left(v_{1}-v_{2}\right)+a_{2}\left(v_{2}-v_{3}\right)+a_{3}\left(v_{3}-v_{4}\right)+a_{4} v_{4}=0 .
$$

Then

$$
a_{1} v_{1}+\left(a_{2}-a_{1}\right) v_{2}+\left(a_{3}-a_{2}\right) v_{3}+\left(a_{4}-a_{3}\right) v_{4}=0
$$

The linear independence of $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ implies that

$$
a_{1}=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=0
$$

and this implies that

$$
a_{1}=a_{2}=a_{3}=a_{4}=0 .
$$

4. Similar proofs to the previous two propositions show that $\left\{v_{1}+v_{2}, v_{2}+\right.$ $\left.v_{3}, v_{3}+v_{4}, v_{4}\right\}$ is linearly independent and spanning. Hence it is a basis.
5. The following axioms hold by properties of the complex numbers:

$$
\begin{gathered}
\alpha+\beta=\beta+\alpha, \alpha, \beta \in \mathbb{C} \\
\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma, \alpha, \beta, \gamma \in \mathbb{C} \\
(a b) \alpha=a(b \alpha), \alpha \in \mathbb{C}, a, b \in \mathbb{R} \\
(a+b)(\alpha+\beta)=a \alpha+a \beta+b \alpha+b \beta, \alpha, \beta \in \mathbb{C}, a, b \in \mathbb{R} . \\
1 \alpha=\alpha .
\end{gathered}
$$

0 serves as the additive identity in \mathbb{C} and satisfies $0+\alpha=\alpha$ for all $\alpha \in \mathbb{C}$. $-\alpha$ serves as the additive inverse in \mathbb{C} and satisfies $\alpha+(-\alpha)=0$ for all α.
6. Two functions f, g are linearly independent over \mathbb{R} if

$$
a f+b g=0 \Rightarrow(a, b)=(0,0)
$$

where $a, b \in \mathbb{R}$ and the equality $a f+b g=0$ is an equality of functions. In particular, it holds for all $x: a f(x)+b g(x)=$ for all $x \in \mathbb{R}$.
Suppose that

$$
a \sin (x)+b \cos (x)=0
$$

for all $x \in \mathbb{R}$. Set $x=0$ to see that $b=0$ and set $x=\frac{\pi}{2}$ to see that $a=0$.

