Math 110 Final (SOLUTIONS)

August 9, 2018

1. The span of the columns is the image. Therefore the image is 1 -dimensional. By rank-nullity, $\operatorname{dim}(\operatorname{ker}(T))=n-1$.
2. Suppose $v \in \operatorname{ker}(T) \cap \operatorname{im}(T)$. Then $T(v)=0$ and $v=T(w)$ for some $w \in V$. Then $0=T(v)=T^{2}(w)=T(w)=v$.
3. (a) The axioms of an inner product imply that

$$
\left\langle v+w, v_{0}\right\rangle=\left\langle v, v_{0}\right\rangle+\left\langle w, v_{0}\right\rangle
$$

so that

$$
T(v+w)=\left\langle v+w, v_{0}\right\rangle v_{0}=\left\langle v, v_{0}\right\rangle v_{0}+\left\langle w, v_{0}\right\rangle v_{0}=T(v)+T(w)
$$

and the axioms of an inner product also imply that

$$
\left\langle c v, v_{0}\right\rangle=c\left\langle v, v_{0}\right\rangle
$$

so that

$$
T(c v)=\left\langle c v, v_{0}\right\rangle v_{0}=c\left\langle v, v_{0}\right\rangle v_{0}=c T(v) .
$$

(b) If $v_{0} \neq 0$, then v_{0} is an eigenvector of T (with eigenvalue $\left\|v_{0}\right\|^{2}$). If $v_{0}=0$, then T is the zero map, so any nonzero vector is an eigenvector (with eigenvalue 0).
4. Given a linear relation

$$
a_{0} v+a_{1} T(v)+\cdots+a_{k-1} T^{k-1}(v)=0
$$

apply T^{k-1} to each side to get that

$$
a_{0} T^{k-1}(v)+a_{1} T^{k}(v)+\cdots+a_{k-1} T^{2 k-1}(v)=0
$$

Then all but the first term are 0 , so

$$
a_{0} T^{k-1}(v)=0
$$

so either $a_{0}=0$ or $T^{k-1}(v)=0$. The latter is nonzero by construction. Therefore $a_{0}=0$. Therefore

$$
a_{1} T(v)+a_{2} T^{2}(v)+\cdots+a_{k-1} T^{k-1}(v)=0
$$

Apply T^{k-2} to each side to similarly get that $a_{1}=0$. Repeat in this manner until you've shown that each a_{i} is zero.
5. The singular vectors in the domain are the eigenvectors of $T^{*} T$.

$$
T^{*} T=\left(\begin{array}{ll}
5 & 1 \\
1 & 5
\end{array}\right) .
$$

The eigenvalues are the roots of $(5-\lambda)^{2}-1=24-10 \lambda+\lambda^{2}=(4-$ $\lambda)(6-\lambda)$. The eigenvectors are therefore

$$
v_{1}=\binom{1}{1}, v_{2}=\binom{1}{-1}
$$

The singular values are $s_{1}=\sqrt{6}$ and $s_{2}=\sqrt{4}=2$. The singular vectors are the normalizations of $T\left(v_{1}\right)$ and $T\left(v_{2}\right)$, so

$$
\begin{gathered}
w_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
w_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) .
\end{gathered}
$$

To complete this to an orthonormal basis of \mathbb{R}^{3}, add

$$
w_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

6. Since T is normal let $\left(v_{1}, \ldots, v_{n}\right)$ be an orthonormal eigenbasis with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Write

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

so that

$$
T^{k}(v)=a_{1} T^{k}\left(v_{1}\right)+\cdots+a_{n} T^{k}\left(v_{n}\right)=\sum_{i=1}^{n} \lambda_{i}^{k} a_{i} v_{i}
$$

Therefore

$$
\left\|T_{k}(v)\right\|^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2 k}\left|a_{i}\right|^{2}
$$

As $k \rightarrow \infty, \lambda_{i}^{k} \rightarrow 0$ if $i \geq 2$. Recall that $\lambda_{1}=1$. Therefore

$$
\lim _{k \rightarrow \infty}\left\|T^{k}(v)\right\|^{2}=\left|a_{1}\right|^{2}
$$

This is equal 0 only if $a_{1}=0$, so the vectors for which the limit is zero is the span of $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$.
7. If T is diagonalizable with $\left(v_{1}, \ldots, v_{n}\right)$ an eigenbasis then $S T S^{-1}$ is diagonalizable with $\left(S v_{1}, \ldots, S v_{n}\right)$ an eigenbasis. Therefore

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)
$$

is diagonalizable with eigenbasis

$$
\binom{1}{0},\binom{1}{1}
$$

The two eigenspaces are not orthogonal. Therefore while

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

is self-adjoint,

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

is not, since there cannot be two orthogonal eigenvectors corresponding to different eigenvalues.
8. It is actually easier to do the projection to U^{\perp} first. A basis for U^{\perp} consists of

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and a vector

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

such that

$$
a+2 b=0,2 b+c=0
$$

Set $d=0$ and note that $a=c=-2 b$. Therefore

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right), \frac{1}{3}\left(\begin{array}{c}
2 \\
-1 \\
2 \\
0
\end{array}\right)
$$

forms a basis of U^{\perp}. The projection of $(3,6,9,0)$ to U^{\perp} is its projection to the span of $(2,-1,2,0)$, since it's orthogonal to $(0,0,0,1)$. Therefore the projection is

$$
\frac{1}{9}\left(\left(\begin{array}{l}
3 \\
6 \\
9 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
2 \\
0
\end{array}\right)\right)\left(\begin{array}{c}
2 \\
-1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
4 \\
-2 \\
4 \\
0
\end{array}\right)
$$

And so the projection of $(3,6,9,0)$ to U is

$$
\left(\begin{array}{l}
3 \\
6 \\
9 \\
0
\end{array}\right)-\left(\begin{array}{c}
4 \\
-2 \\
4 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
8 \\
5 \\
0
\end{array}\right) .
$$

