Math 110 Final (PRACTICE) 110 Minutes

- 1. Let v_1, \ldots, v_n be a set of vectors in an inner product space. Define what it means for v_1, \ldots, v_n to be linearly independent. Define what it means for v_1, \ldots, v_n to be orthonormal.
- 2. In \mathbb{R}^3 , let

$$U = \operatorname{Span} \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Find an orthonormal basis for U^{\perp} .

- 3. Let M be an $n \times n$ matrix with entries in F. Suppose that its characteristic polynomial is $\det(tI - M) = (t - 1)^n$.
 - (a) Prove or disprove: the rows of M are linearly independent.
 - (b) Prove or disprove: M is the identity matrix.
- 4. Let V be a finite-dimensional complex inner product space.
 - (a) Prove or disprove: Self-adjoint operators on V form a subspace of $\mathcal{L}(V, V)$.
 - (b) Prove or disprove: Isometries of V form a subspace of $\mathcal{L}(V, V)$.
- 5. Let V be a complex inner product space. Prove that

$$\langle v, w \rangle = \frac{1}{4} \sum_{k=0}^{3} i^k ||v + i^k w||^2.$$

Here $i = \sqrt{-1}$.

- 6. Let $T: V \to V$ be a linear map of complex finite-dimensional vector spaces. Suppose T is not invertible. Does there exist a $\lambda \in \mathbb{C}$ such that $T \lambda \operatorname{id}_V$ is invertible? Explain.
- 7. Consider \mathbb{R}^2 and \mathbb{R}^3 with the dot product. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be given, with respect to the standard basis, by the matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

What are the singular vectors and singular values of T?

8. Let V be a finite-dimensional inner product space and suppose that S and T are self-adjoint. Prove that if ST = TS then there exists an orthonormal basis (v_1, \ldots, v_n) of V which is an eigenbasis for both S and T. (hint: the λ -eigenspace for S is invariant for T and vice versa)