Math 110 Final (PRACTICE)
 110 Minutes

1. Let v_{1}, \ldots, v_{n} be a set of vectors in an inner product space. Define what it means for v_{1}, \ldots, v_{n} to be linearly independent. Define what it means for v_{1}, \ldots, v_{n} to be orthonormal.
2. In \mathbb{R}^{3}, let

$$
U=\operatorname{Span}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Find an orthonormal basis for U^{\perp}.
3. Let M be an $n \times n$ matrix with entries in \mathbb{F}. Suppose that its characteristic polynomial is $\operatorname{det}(t I-M)=(t-1)^{n}$.
(a) Prove or disprove: the rows of M are linearly independent.
(b) Prove or disprove: M is the identity matrix.
4. Let V be a finite-dimensional complex inner product space.
(a) Prove or disprove: Self-adjoint operators on V form a subspace of $\mathcal{L}(V, V)$.
(b) Prove or disprove: Isometries of V form a subspace of $\mathcal{L}(V, V)$.
5. Let V be a complex inner product space. Prove that

$$
\langle v, w\rangle=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\|v+i^{k} w\right\|^{2}
$$

Here $i=\sqrt{-1}$.
6. Let $T: V \rightarrow V$ be a linear map of complex finite-dimensional vector spaces. Suppose T is not invertible. Does there exist a $\lambda \in \mathbb{C}$ such that $T-\lambda \mathrm{id}_{V}$ is invertible? Explain.
7. Consider \mathbb{R}^{2} and \mathbb{R}^{3} with the dot product. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given, with respect to the standard basis, by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

What are the singular vectors and singular values of T ?
8. Let V be a finite-dimensional inner product space and suppose that S and T are self-adjoint. Prove that if $S T=T S$ then there exists an orthonormal basis $\left(v_{1}, \ldots, v_{n}\right)$ of V which is an eigenbasis for both S and T. (hint: the λ-eigenspace for S is invariant for T and vice versa)

