Math 110 Final (PRACTICE: 3/4 length) SOLUTIONS

- 1. The image is the span of the columns and hence 1-dimensional. Therefore the kernel is 2-dimensional. (1, 1, 1) is an eigenvector with eigenvalue 3 and the kernel is spanned by (1, -1, 0) and (0, 1, -1). Therefore the eigenvectors of eigenvalue 3 are the nonzero vectors of the form (a, a, a)and the eigenvectors with eigenvalue 0 are the nonzero vectors of the form (a, b, c) with a + b + c = 0.
- 2. Let v be a basis of im(T). In particular, $v \neq 0$. Then T(v) = av, since $T(v) \in im(T)$. Therefore v is an eigenvector.
- 3. Suppose a linear relation

$$a_1v_i + a_2v_j = 0.$$

Take an inner product on both sides with v_i and and inner product on both sides with v_j to get two equations

$$a_1 \langle v_i, v_i \rangle + a_2 \langle v_j, v_i \rangle = 0$$
$$a_1 \langle v_i, v_j \rangle + a_2 \langle v_j, v_j \rangle = 0$$

i.e.,

$$2a_1 - a_2 = 0$$

$$-a_1 + 2a_2 = 0.$$

Solving these two equations shows that $a_1 = a_2 = 0$ therefore v_i and v_j are linearly independent.

The three vectors are linearly dependent because $v_i + v_j + v_k = 0$. To see this, note that

$$\langle v_i + v_j + v_k, v_i + v_j + v_k \rangle = \|v_i\|^2 + \|v_j\|^2 + \|v_k\|^2 + 2\langle v_i, v_k \rangle + 2\langle v_i, v_j \rangle + 2\langle v_j, v_k \rangle = 0.$$

The norm of a vector is 0 only if that vector is 0.

4. Perform Gram-Schmidt on $1, x^2$. Normalize 1 to get the function

$$u_1 = \frac{1}{\sqrt{2}}.$$

Then $x^2 - \langle x^2, u_1 \rangle u_1 = x^2 - \frac{1}{2} \int_{-1}^1 x^2 dx = x^2 - \frac{1}{3}$. The norm squared of this is

$$\left\langle x^2 - \frac{1}{3}, x^2 - \frac{1}{3} \right\rangle = \int_{-1}^{1} \left(x^2 - \frac{1}{3} \right)^2 dx = \frac{45}{8}$$

Therefore

$$u_2 = \sqrt{\frac{45}{8}} \left(x^2 - \frac{1}{3} \right).$$

The projection of x^4 onto the space spanned by u_1 and u_2 is

$$\langle x^4, u_1 \rangle u_1 + \langle x^4, u_2 \rangle u_2 = \frac{1}{2} \int_{-1}^1 x^4 dx + \frac{45}{8} \int_{-1}^1 x^4 \left(x^2 - \frac{1}{3} \right) dx$$
$$= \frac{1}{5} + \frac{6}{7} \left(x^2 - \frac{1}{3} \right)$$

5. Let U_1 , U_2 , and U_3 be subspaces each of dimension 4. Since $\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$ then

$$5 \ge \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$$

 \mathbf{SO}

$$\dim(U_1 \cap U_2) \ge 3.$$

Similarly,

$$5 \ge \dim(U_1 \cap U_2) + \dim(U_3) - \dim(U_1 \cap U_1 \cap U_3) = \dim(U_1 \cap U_2) + 4 - \dim(U_1 \cap U_2 \cap U_3)$$
$$\ge 3 + 4 - \dim(U_1 \cap U_2 \cap U_3).$$

Therefore

$$\dim(U_1 \cap U_2 \cap U_3) \ge 2$$

In particular, $U_1 \cap U_2 \cap U_3$ contains a line.

6. Let $\phi \in \mathcal{M}_{n,k}$. Then ϕ applied to k arbitrary vectors is

$$\phi\left(\sum_{i_1=1}^n M_{i_11}e_{i_1},\ldots,\sum_{i_k=1}^n M_{i_kk}e_{i_k}\right)$$

which by multilinearity is

$$\sum_{i_1=1}^{n} \cdots \sum_{i_k=1}^{n} M_{i_1 1} \cdots M_{i_k k} \phi(e_{i_1}, \dots, e_{i_k}).$$

Note that there are n^k different sequences (i_1, i_2, \ldots, i_k) . ϕ is determined by its values on the n^k k-tuples of standard basis vectors $(e_{i_1}, \ldots, e_{i_k})$. Defining ϕ to 1 on one of these and 0 on the other $n^k - 1$ defines n^k linearly independent vectors in $\mathcal{M}_{n,k}$. Explicitly:

$$\phi_{i_1,i_2,\ldots,i_k}(e_{j_1},\ldots,e_{j_k}) := \begin{cases} 1 & i_1 = j_1,\ldots,i_k = j_k \\ 0 & \text{otherwise} \end{cases}$$

Since any ϕ can be written as a linear combination of the ϕ_{i_1,\ldots,i_k} , these form a basis. Therefore dim $(\mathcal{M}_{n,k}) = n^k$.