Math 110 Final (PRACTICE: 3/4 length) SOLUTIONS

1. The image is the span of the columns and hence 1-dimensional. Therefore the kernel is 2 -dimensional. $(1,1,1)$ is an eigenvector with eigenvalue 3 and the kernel is spanned by $(1,-1,0)$ and $(0,1,-1)$. Therefore the eigenvectors of eigenvalue 3 are the nonzero vectors of the form (a, a, a) and the eigenvectors with eigenvalue 0 are the nonzero vectors of the form (a, b, c) with $a+b+c=0$.
2. Let v be a basis of $\operatorname{im}(T)$. In particular, $v \neq 0$. Then $T(v)=a v$, since $T(v) \in \operatorname{im}(T)$. Therefore v is an eigenvector.
3. Suppose a linear relation

$$
a_{1} v_{i}+a_{2} v_{j}=0
$$

Take an inner product on both sides with v_{i} and and inner product on both sides with v_{j} to get two equations

$$
\begin{aligned}
& a_{1}\left\langle v_{i}, v_{i}\right\rangle+a_{2}\left\langle v_{j}, v_{i}\right\rangle=0 \\
& a_{1}\left\langle v_{i}, v_{j}\right\rangle+a_{2}\left\langle v_{j}, v_{j}\right\rangle=0
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
2 a_{1}-a_{2}=0 \\
-a_{1}+2 a_{2}=0 .
\end{gathered}
$$

Solving these two equations shows that $a_{1}=a_{2}=0$ therefore v_{i} and v_{j} are linearly independent.
The three vectors are linearly dependent because $v_{i}+v_{j}+v_{k}=0$. To see this, note that
$\left\langle v_{i}+v_{j}+v_{k}, v_{i}+v_{j}+v_{k}\right\rangle=\left\|v_{i}\right\|^{2}+\left\|v_{j}\right\|^{2}+\left\|v_{k}\right\|^{2}+2\left\langle v_{i}, v_{k}\right\rangle+2\left\langle v_{i}, v_{j}\right\rangle+2\left\langle v_{j}, v_{k}\right\rangle=0$.
The norm of a vector is 0 only if that vector is 0 .
4. Perform Gram-Schmidt on $1, x^{2}$. Normalize 1 to get the function

$$
u_{1}=\frac{1}{\sqrt{2}}
$$

Then $x^{2}-\left\langle x^{2}, u_{1}\right\rangle u_{1}=x^{2}-\frac{1}{2} \int_{-1}^{1} x^{2} d x=x^{2}-\frac{1}{3}$. The norm squared of this is

$$
\left\langle x^{2}-\frac{1}{3}, x^{2}-\frac{1}{3}\right\rangle=\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{45}{8}
$$

Therefore

$$
u_{2}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) .
$$

The projection of x^{4} onto the space spanned by u_{1} and u_{2} is

$$
\begin{aligned}
\left\langle x^{4}, u_{1}\right\rangle u_{1}+\left\langle x^{4}, u_{2}\right\rangle u_{2} & =\frac{1}{2} \int_{-1}^{1} x^{4} d x+\frac{45}{8} \int_{-1}^{1} x^{4}\left(x^{2}-\frac{1}{3}\right) d x \\
& =\frac{1}{5}+\frac{6}{7}\left(x^{2}-\frac{1}{3}\right)
\end{aligned}
$$

5. Let U_{1}, U_{2}, and U_{3} be subspaces each of dimension 4. Since $\operatorname{dim}\left(U_{1}+\right.$ $\left.U_{2}\right)=\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)$ then

$$
5 \geq \operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)-\operatorname{dim}\left(U_{1} \cap U_{2}\right)
$$

so

$$
\operatorname{dim}\left(U_{1} \cap U_{2}\right) \geq 3
$$

Similarly,

$$
\begin{gathered}
5 \geq \operatorname{dim}\left(U_{1} \cap U_{2}\right)+\operatorname{dim}\left(U_{3}\right)-\operatorname{dim}\left(U_{1} \cap U_{1} \cap U_{3}\right)=\operatorname{dim}\left(U_{1} \cap U_{2}\right)+4-\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right) \\
\geq 3+4-\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right) .
\end{gathered}
$$

Therefore

$$
\operatorname{dim}\left(U_{1} \cap U_{2} \cap U_{3}\right) \geq 2
$$

In particular, $U_{1} \cap U_{2} \cap U_{3}$ contains a line.
6. Let $\phi \in \mathcal{M}_{n, k}$. Then ϕ applied to k arbitrary vectors is

$$
\phi\left(\sum_{i_{1}=1}^{n} M_{i_{1} 1} e_{i_{1}}, \ldots, \sum_{i_{k}=1}^{n} M_{i_{k} k} e_{i_{k}}\right)
$$

which by multilinearity is

$$
\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} M_{i_{1} 1} \cdots M_{i_{k} k} \phi\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) .
$$

Note that there are n^{k} different sequences $\left(i_{1}, i_{2}, \ldots, i_{k}\right) . \phi$ is determined by its values on the $n^{k} k$-tuples of standard basis vectors $\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$. Defining ϕ to 1 on one of these and 0 on the other $n^{k}-1$ defines n^{k} linearly independent vectors in $\mathcal{M}_{n, k}$. Explicitly:

$$
\phi_{i_{1}, i_{2}, \ldots, i_{k}}\left(e_{j_{1}}, \ldots, e_{j_{k}}\right):= \begin{cases}1 & i_{1}=j_{1}, \ldots, i_{k}=j_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Since any ϕ can be written as a linear combination of the $\phi_{i_{1}, \ldots, i_{k}}$, these form a basis. Therefore $\operatorname{dim}\left(\mathcal{M}_{n, k}\right)=n^{k}$.

