Math 110 Final (PRACTICE: 3/4 length)

August 7, 2018
80 Minutes

Name:

1	
2	
3	
4	
5	
6	

1. What are the eigenvectors and eigenvalues of

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) ?
$$

2. Let $T: V \rightarrow V$ be a linear map with $\operatorname{dim}(\operatorname{im}(T))=1$. Prove that T has an eigenvector.
3. Let V be an inner product space. Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a collection of vectors such that

$$
\left\langle v_{i}, v_{j}\right\rangle=\left\{\begin{array}{ll}
2 & i=j \\
-1 & i \neq j
\end{array} .\right.
$$

Prove that any two distinct vectors $\left\{v_{i}, v_{j}\right\}$ are linearly independent, but any three distinct vectors $\left\{v_{i}, v_{j}, v_{k}\right\}$ are linearly dependent.
4. Let V be the inner product space of continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ with the L^{2} inner product:

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Let U be the span of the functions $f(x)=1$ and $f(x)=x^{2}$. What is the orthogonal projection of $f(x)=x^{4}$ to U ? (The final answer involves some fractions, but no radicals.)
5. Do any three four-dimensional subspaces of \mathbb{R}^{5} contain a line in their intersection? Explain.
6. The space $\mathcal{M}_{n, k}$ of multilinear maps

$$
\phi: \underbrace{\mathbb{F}^{n} \times \mathbb{F}^{n} \times \cdots \times \mathbb{F}^{n}}_{k \text { times }} \rightarrow \mathbb{F}
$$

forms a vector space in the usual way

$$
\begin{gathered}
(\phi+\psi)\left(v_{1}, \ldots, v_{k}\right):=\phi\left(v_{1}, \ldots, v_{k}\right)+\psi\left(v_{1}, \ldots, v_{k}\right) \\
(c \phi)\left(v_{1}, \ldots, v_{k}\right)=c \phi\left(v_{1}, \ldots, v_{k}\right) .
\end{gathered}
$$

In terms of n and k, what is $\operatorname{dim}\left(\mathcal{M}_{n, k}\right)$? Justify your answer.

