Math 110 Final August 9, 2018 110 Minutes

Name:_____

1	
2	
3	
4	
5	
6	
7	
8	

1. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be given, with respect to the standard basis, by an $m \times n$ matrix filled with 1s:

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}.$$

What is $\dim(\ker(T))$?

2. Let $T: V \to V$ be a linear map such that $T^2 = T$. Prove that $\ker(T) \cap \operatorname{im}(T) = \{0\}$.

3. Let V be an inner product space. Let v_0 be a vector in V. Consider the following map

$$T(v) = \langle v, v_0 \rangle v_0.$$

- (a) Prove that T is a linear map.
- (b) Prove that T has an eigenvector.

4. Let V be a vector space and $T: V \to V$ a linear map. Suppose that $v \in V$ is such that $T^{k-1}(v) \neq 0$ but $T^k(v) = 0$. Prove that

$$\{v, T(v), T^2(v), T^3(v), \dots, T^{k-1}(v)\}$$

is a linearly independent set.

5. Consider \mathbb{R}^2 and \mathbb{R}^3 with the dot product. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be given, with respect to the standard basis, by the following matrix:

$$\begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

Find the singular values and singular vectors of T.

6. Let $T: V \to V$ be a normal operator on a complex inner product space V with $\dim(V) = n$. Call its eigenvalues $\lambda_1, \ldots, \lambda_n$. Suppose that $|\lambda_1| = 1$ and $|\lambda_i| < 1$ for $i \ge 2$. Which vectors $v \in V$ satisfy

$$\lim_{k \to \infty} \|T^k v\| = 0?$$

Justify your answer.

7. Let V be a finite-dimensional real inner product space. Prove or disprove: if $S: V \to V$ is invertible and $T: V \to V$ is self-adjoint, then STS^{-1} is self-adjoint.

8. Consider \mathbb{R}^4 with the dot product. Let $U \subset \mathbb{R}^4$ be the span of

$$\begin{pmatrix} 1\\ 2\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 2\\ 1\\ 0 \end{pmatrix}.$$
(a) What is the projection of
$$\begin{pmatrix} 3\\ 6\\ 9\\ 0 \end{pmatrix}$$
 to U?
(b) What is the projection of
$$\begin{pmatrix} 3\\ 6\\ 9\\ 0 \end{pmatrix}$$
 to U^{\perp} ?