Math 110 Final

August 9, 2018

110 Minutes

Name:

1	
2	
3	
4	
5	
6	
7	
8	

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be given, with respect to the standard basis, by an $m \times n$ matrix filled with 1 s :

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{array}\right)
$$

What is $\operatorname{dim}(\operatorname{ker}(T))$?
2. Let $T: V \rightarrow V$ be a linear map such that $T^{2}=T$. Prove that $\operatorname{ker}(T) \cap$ $\operatorname{im}(T)=\{0\}$.
3. Let V be an inner product space. Let v_{0} be a vector in V. Consider the following map

$$
T(v)=\left\langle v, v_{0}\right\rangle v_{0} .
$$

(a) Prove that T is a linear map.
(b) Prove that T has an eigenvector.
4. Let V be a vector space and $T: V \rightarrow V$ a linear map. Suppose that $v \in V$ is such that $T^{k-1}(v) \neq 0$ but $T^{k}(v)=0$. Prove that

$$
\left\{v, T(v), T^{2}(v), T^{3}(v), \ldots, T^{k-1}(v)\right\}
$$

is a linearly independent set.
5. Consider \mathbb{R}^{2} and \mathbb{R}^{3} with the dot product. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given, with respect to the standard basis, by the following matrix:

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & 1 \\
0 & 2
\end{array}\right) .
$$

Find the singular values and singular vectors of T.
6. Let $T: V \rightarrow V$ be a normal operator on a complex inner product space V with $\operatorname{dim}(V)=n$. Call its eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Suppose that $\left|\lambda_{1}\right|=1$ and $\left|\lambda_{i}\right|<1$ for $i \geq 2$. Which vectors $v \in V$ satisfy

$$
\lim _{k \rightarrow \infty}\left\|T^{k} v\right\|=0 ?
$$

Justify your answer.
7. Let V be a finite-dimensional real inner product space. Prove or disprove: if $S: V \rightarrow V$ is invertible and $T: V \rightarrow V$ is self-adjoint, then $S T S^{-1}$ is self-adjoint.
8. Consider \mathbb{R}^{4} with the dot product. Let $U \subset \mathbb{R}^{4}$ be the span of

$$
\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right)
$$

(a) What is the projection of $\left(\begin{array}{l}3 \\ 6 \\ 9 \\ 0\end{array}\right)$ to U ?
(b) What is the projection of $\left(\begin{array}{l}3 \\ 6 \\ 9 \\ 0\end{array}\right)$ to U^{\perp} ?

