Math 110

Scraps From Drafting the Final

1. Give an example of a vector space V and a linear map $T: V \rightarrow V$ whose eigenvalues include all nonnegative integers.
2. Define $V^{\vee}=\mathcal{L}(V, \mathbb{F})$. Let V and W be finite-dimensional vector spcaes. If $T: V \rightarrow W$ is a linear map, define $T^{\vee}: W^{\vee} \rightarrow V^{\vee}$ by $T^{\vee}(\phi)=\phi \circ T$.
(a) Show that if T is surjective then T^{\vee} is injective.
(b) Show that if T is injective then T^{\vee} is surjective.
3. Let V be a finite-dimensional inner product space and let $T: V \rightarrow V$ be a self-adjoint isometry. What are the possible eigenvalues of T ?
4. Let V be a real inner product space. Prove that self-adjoint operators $T: V \rightarrow V$ form a subspace of $\mathcal{L}(V, V)$. What is the dimension of this subspace?
5. Let V be a complex inner product space. Suppose T is self-adjoint and that $T^{N}=\operatorname{id}_{V}$ for some $N \geq 0$. What are the possible eigenvalues for T ?
6. Consider \mathbb{C} as a vector space over \mathbb{R}. Define an inner product on \mathbb{C} as

$$
\langle a+b i, c+d i\rangle=a c+b d .
$$

For $z \in \mathbb{C}$, let $T_{z}: \mathbb{C} \rightarrow \mathbb{C}$ be multiplication by z. For what values of z is T_{z} self-adjoint? For what values of z is T_{z} an isometry?
7. Consider \mathbb{R}^{2} with the dot product. Find a diagonalizable linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that does not have an orthogonal eigenbasis.
8. (a) Give an example of a linear transformation from a complex vector space to itself for which every vector is an eigenvector.
(b) Give an example of a linear transformation from a complex vector space to itself that is not diagonalizable.

