Math 110 Scraps From Drafting the Final

- 1. Give an example of a vector space V and a linear map $T: V \to V$ whose eigenvalues include all nonnegative integers.
- 2. Define $V^{\vee} = \mathcal{L}(V, \mathbb{F})$. Let V and W be finite-dimensional vector speaks. If $T: V \to W$ is a linear map, define $T^{\vee}: W^{\vee} \to V^{\vee}$ by $T^{\vee}(\phi) = \phi \circ T$.
 - (a) Show that if T is surjective then T^{\vee} is injective.
 - (b) Show that if T is injective then T^{\vee} is surjective.
- 3. Let V be a finite-dimensional inner product space and let $T: V \to V$ be a self-adjoint isometry. What are the possible eigenvalues of T?
- 4. Let V be a real inner product space. Prove that self-adjoint operators $T: V \to V$ form a subspace of $\mathcal{L}(V, V)$. What is the dimension of this subspace?
- 5. Let V be a complex inner product space. Suppose T is self-adjoint and that $T^N = \mathrm{id}_V$ for some $N \ge 0$. What are the possible eigenvalues for T?
- 6. Consider \mathbb{C} as a vector space over \mathbb{R} . Define an inner product on \mathbb{C} as

$$\langle a+bi, c+di \rangle = ac+bd.$$

For $z \in \mathbb{C}$, let $T_z : \mathbb{C} \to \mathbb{C}$ be multiplication by z. For what values of z is T_z self-adjoint? For what values of z is T_z an isometry?

- 7. Consider \mathbb{R}^2 with the dot product. Find a diagonalizable linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that does not have an orthogonal eigenbasis.
- 8. (a) Give an example of a linear transformation from a complex vector space to itself for which every vector is an eigenvector.
 - (b) Give an example of a linear transformation from a complex vector space to itself that is not diagonalizable.