Math 110

August 2, 2018
The Determinant

1. In cycle notation, write out all 24 permutations of $\{1,2,3,4\}$.
2. Using the definition

$$
\operatorname{sign}(\sigma)=\frac{\prod_{i<j}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)}{\prod_{i<j}\left(x_{i}-x_{j}\right)}
$$

prove that if σ is a transposition then $\operatorname{sign}(\sigma)=-1$. Remember that a transposition is a permutation that switches exactly two elements of $\{1, \ldots, n\}$.
3. For each $\sigma \in S_{3}$, write down the matrix for the linear map that takes e_{i} to $e_{\sigma(i)}$. What is the determinant of such a matrix?
4. Prove that the vector space of alternating multilinear maps $\mathbb{F}^{2} \times \mathbb{F}^{2} \times \mathbb{F}^{2} \rightarrow$ \mathbb{F} is the zero vector space.
5. Compute the determinant of

$$
\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right)
$$

6. Compute the determinant of

$$
\left(\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

7. Compute the determinant of

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

8. Compute the characteristic polynomials of the above three matrices.
9. Is it true that $\operatorname{det}(M+N)=\operatorname{det}(M)+\operatorname{det}(N)$?
10. Find the eigenvalues and eigenvectors of

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
0 & 0 & 2
\end{array}\right),\left(\begin{array}{ccc}
2 & 4 & 4 \\
4 & 2 & -4 \\
6 & 6 & 0
\end{array}\right)
$$

11. Consider a 4×4 matrix of the form

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A, B, C, and D are 2×2 matrices. Is $\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(D)-$ $\operatorname{det}(B) \operatorname{det}(C) . ?$
12. Consider an arbitrary square matrix

$$
M=\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)
$$

where A and D are square blocks. Prove that $\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(D)$.
13. The trace of a matrix $M, \operatorname{tr}(M)$, is the sum of the diagonal entries.
(a) Prove that $\operatorname{tr}(A B C)=\operatorname{tr}(C A B)=\operatorname{tr}(B C A)$.
(b) Prove that, like the determinant, tr is invariant under conjugation: $\operatorname{tr}\left(P M P^{-1}\right)=\operatorname{tr}(M)$.
(c) Let $M(t)$ be a differentiable 1-parameter family of matrices such that $M(0)=I$. Prove that

$$
\left.\frac{d}{d t} \operatorname{det}(M(t))\right|_{t=0}=\operatorname{tr}\left(\left.\frac{d M}{d t}\right|_{t=0}\right) .
$$

Moral: trace is the infinitesimal version of determinant.

