Math 110
July 31, 2018
Singular Value Decomposition 2 (SOLUTIONS)
1.

$$
T^{*} T=\left(\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
5 & -3 \\
-3 & 5
\end{array}\right)
$$

The eigenvalues are solutions to $(5-\lambda)^{2}-9=0$ so $\lambda=8,2$. To find eigenvectors of $T^{*} T$, solve

$$
\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)\binom{a}{b}=\binom{8 a}{8 b}
$$

and

$$
\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)\binom{a}{b}=\binom{2 a}{2 b}
$$

to get

$$
\binom{1}{-1}, \lambda=8 \text { and }\binom{1}{1}, \lambda=2 .
$$

Normalize these to get v_{1} and v_{2} :

$$
v_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}, v_{2}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

Both of these have nonzero eigenvalues, so set

$$
\begin{aligned}
& w_{1}=\frac{T\left(v_{1}\right)}{\sqrt{8}}=\binom{1}{0} \\
& w_{2}=\frac{T\left(v_{2}\right)}{\sqrt{2}}=\binom{0}{1} .
\end{aligned}
$$

The singular values are $\sqrt{8}$ and $\sqrt{2}$.
2.

$$
\begin{gathered}
T^{*} T=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
v_{1}=\binom{0}{1}, v_{2}=\binom{1}{0}
\end{gathered}
$$

is an orthonormal eigenbasis with the vectors corresponding to the nonzero eigenvalues first. Then

$$
T\left(v_{1}\right)=\binom{1}{0}
$$

Set

$$
w_{1}=\frac{T\left(v_{1}\right)}{\sqrt{1}}=\binom{1}{0} .
$$

Since $T\left(v_{2}\right)=0$, you don't construct w_{2} in this way. Simply extend w_{1} to an orthonormal basis $\left(w_{1}, w_{2}\right)$, i.e. let

$$
w_{2}=\binom{0}{1}
$$

The singular values are 1 and 0 .
3.

$$
T^{*} T=\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 5 \\
5 & 5
\end{array}\right)
$$

The eigenvalues are solutions to $(\lambda-5)^{2}-25$, so they are 10 and 0 . An eigenvector corresponding to 10 is

$$
\binom{1}{1}
$$

and an eigenvector for 0 is

$$
\binom{1}{-1}
$$

Normalize these to get v_{1} and v_{2} :

$$
v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

Set

$$
w_{1}=\frac{T\left(v_{1}\right)}{\sqrt{10}}=\frac{1}{\sqrt{5}}\binom{2}{1}
$$

Since v_{2} corresponds to a zero eigenvalue, define w_{2} so that $\left(w_{1}, w_{2}\right)$ is an orthonormal basis. So let

$$
w_{2}=\frac{1}{\sqrt{5}}\binom{-1}{2}
$$

The singular values are $\sqrt{10}$ and 0 .
4.

$$
T^{*} T=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

The eigenvalues are 3,1 , and 0 . By solving

$$
\begin{gathered}
a+b=\lambda a \\
a+2 b+c=\lambda b \\
b+c=\lambda c
\end{gathered}
$$

for $\lambda=3,1,0$ you get three eigenvectors which, when normalized, are

$$
v_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), v_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) .
$$

Set

$$
\begin{gathered}
w_{1}=\frac{T\left(v_{1}\right)}{\sqrt{3}}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
w_{2}=\frac{T\left(v_{2}\right)}{\sqrt{1}}=\frac{1}{\sqrt{2}}\binom{1}{-1} .
\end{gathered}
$$

Since $\left(w_{1}, w_{2}\right)$ forms a basis of \mathbb{R}^{2}, no more $w_{i} \mathrm{~s}$ are necessary. The singular values are $\sqrt{3}$ and 1 .
5. Since $\left(w_{1}, \ldots, w_{n}\right)$ is an orthonormal basis of W and $\left(v_{1}, \ldots, v_{n}\right)$ is an orthonormal basis of V, you can write

$$
T^{*} w_{i}=\sum_{j} a_{j} v_{j}
$$

Take an inner product with v_{k} on each side to see that

$$
a_{k}=\left\langle T^{*} w_{i}, v_{k}\right\rangle=\left\langle w_{i}, T v_{k}\right\rangle .
$$

But since $T\left(v_{k}\right)=s_{k} w_{k}$, then

$$
\left\langle w_{i}, T v_{k}\right\rangle=\left\langle w_{i}, s_{k} w_{k}\right\rangle=\overline{s_{k}}\left\langle w_{i}, w_{k}\right\rangle
$$

which (note that the singular values are real) is s_{i} if $i=k$ and 0 otherwise. Hence

$$
T^{*} w_{i}=s_{i} v_{i}
$$

Hence the singular vectors for T^{*} are $\left(w_{1}, \ldots, w_{m}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ and the singular values are $s_{1}, \ldots, s_{\min (m, n)}$. These are the same as for T, except the roles of v_{i} and w_{i} are switched.

