Math 110

July 31, 2018 Singular Value Decomposition 2

1. Consider \mathbb{R}^2 with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$\begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_1 and v_2 .

2. Consider \mathbb{R}^2 with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_1 and v_2 .

3. Consider \mathbb{R}^2 with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}.$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_1 and v_2 .

4. Consider \mathbb{R}^2 and \mathbb{R}^3 with the dot product. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given, with respect to the standard basis, by the matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Find the singular vectors and singular values of T. You can use the fact that the eigenvalues of

1	1	$0 \rangle$
1	2	1
$\left(0 \right)$	1	1/

are 3, 1, and 0.

5. Let (v_1, \ldots, v_n) , (w_1, \ldots, w_m) , and $(s_1, \ldots, s_{\min(m,n)})$ be the singular vectors and values of a transformation $T: V \to W$. What are the singular vectors and values of $T^*: W \to V$? (hint: $\langle Tv_i, w_j \rangle = \langle v_i, T^*w_j \rangle$)