Math 110
July 31, 2018
Singular Value Decomposition 2

1. Consider \mathbb{R}^{2} with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$
\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)
$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_{1} and v_{2}.
2. Consider \mathbb{R}^{2} with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_{1} and v_{2}.
3. Consider \mathbb{R}^{2} with the dot product. Find the singular vectors and singular values of the transformation given, with respect to the standard basis, by

$$
\left(\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right)
$$

Graph the singular vectors on the plane. Show the effect to the transformation on the singular vectors for the domain v_{1} and v_{2}.
4. Consider \mathbb{R}^{2} and \mathbb{R}^{3} with the dot product. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be given, with respect to the standard basis, by the matrix

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Find the singular vectors and singular values of T. You can use the fact that the eigenvalues of

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

are 3,1 , and 0 .
5. Let $\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{m}\right)$, and $\left(s_{1}, \ldots, s_{\min (m, n)}\right)$ be the singular vectors and values of a transformation $T: V \rightarrow W$. What are the singular vectors and values of $T^{*}: W \rightarrow V ?\left(\right.$ hint: $\left.\left\langle T v_{i}, w_{j}\right\rangle=\left\langle v_{i}, T^{*} w_{j}\right\rangle\right)$

