Math 110 July 30, 2018 Singular Value Decomposition

This handout walks through a proof of the singular value decomposition:

Theorem 1 (Singular Value Decomposition). Let V and W be finite-dimensional inner product spaces and let $T: V \to W$ be any linear map. Then there exist orthonormal bases (v_1, \ldots, v_n) of V and (w_1, \ldots, w_m) of W and nonnegative numbers s_i such that

$$T(v) = \sum_{i} s_i \langle v, v_i \rangle w_i.$$

Here the sum is over $1 \le i \le n$ if $m \ge n$ and is over $1 \le i \le m$ if $m \le n$.

- 1. Prove that T^*T is self-adjoint. Why does it have an orthonormal eigenbasis (v_1, \ldots, v_n) ?
- 2. Prove that T^*T is positive semidefinite. What does this say about its eigenvalues $\lambda_1, \ldots, \lambda_n$?
- 3. Reorder (v_1, \ldots, v_n) so that (v_1, \ldots, v_m) are the eigenvectors of T^*T with nonzero eigenavalues. Prove that $\{Tv_1, \ldots, Tv_k\}$ is linearly independent. (hint: apply T^*)
- 4. Prove that $T^*Tv = 0$ implies that Tv = 0.
- 5. Prove that (Tv_1, \ldots, Tv_k) (subscript k!) forms a basis of im(T).
- 6. Let

$$w_i := \frac{Tv_i}{\|Tv_i\|}, \ 1 \le i \le k$$

and extend (w_1, \ldots, w_k) to an orthonormal basis of W. Show that

$$\|Tv_i\| = \sqrt{\lambda_i}$$

and

$$T(v) = \sum_{i=1}^{\min(m,n)} \sqrt{\lambda_i} \langle v, v_i \rangle w_i.$$