Math 110

July 30, 2018
Singular Value Decomposition
This handout walks through a proof of the singular value decomposition:
Theorem 1 (Singular Value Decomposition). Let V and W be finite-dimensional inner product spaces and let $T: V \rightarrow W$ be any linear map. Then there exist orthonormal bases $\left(v_{1}, \ldots, v_{n}\right)$ of V and $\left(w_{1}, \ldots, w_{m}\right)$ of W and nonnegative numbers s_{i} such that

$$
T(v)=\sum_{i} s_{i}\left\langle v, v_{i}\right\rangle w_{i}
$$

Here the sum is over $1 \leq i \leq n$ if $m \geq n$ and is over $1 \leq i \leq m$ if $m \leq n$.

1. Prove that $T^{*} T$ is self-adjoint. Why does it have an orthonormal eigenbasis $\left(v_{1}, \ldots, v_{n}\right)$?
2. Prove that $T^{*} T$ is positive semidefinite. What does this say about its eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$?
3. Reorder $\left(v_{1}, \ldots, v_{n}\right)$ so that $\left(v_{1}, \ldots, v_{m}\right)$ are the eigenvectors of $T^{*} T$ with nonzero eigenavalues. Prove that $\left\{T v_{1}, \ldots, T v_{k}\right\}$ is linearly independent. (hint: apply T^{*})
4. Prove that $T^{*} T v=0$ implies that $T v=0$.
5. Prove that $\left(T v_{1}, \ldots, T v_{k}\right)$ (subscript $k!$) forms a basis of $\operatorname{im}(T)$.
6. Let

$$
w_{i}:=\frac{T v_{i}}{\left\|T v_{i}\right\|}, 1 \leq i \leq k
$$

and extend $\left(w_{1}, \ldots, w_{k}\right)$ to an orthonormal basis of W. Show that

$$
\left\|T v_{i}\right\|=\sqrt{\lambda_{i}}
$$

and

$$
T(v)=\sum_{i=1}^{\min (m, n)} \sqrt{\lambda_{i}}\left\langle v, v_{i}\right\rangle w_{i} .
$$

