Math 110

July 23, 2018
Positive Semidefinite Operators and Isometries (SOLUTIONS)

1. $\mathrm{SA}, \mathrm{N}, \mathrm{PS}$

SA, N, PS, PD, I
SA, N, PS, PD
SA, N
SA, N, I
N, I
none
none
SA, N, I
N, I
SA, N, PS
2.

N, I
N, I
N, I
SA, N, I
N
N, I
N
N, I
3. If $\langle T v, v\rangle \geq 0$ for all v and $\langle S v, v\rangle \geq 0$ for all v then $\langle(T+S) v, v\rangle=$ $\langle T v, v\rangle=\langle S v, v\rangle \geq 0$ so $T+S$ is positive semidefinite.
To get the proof for positive definite replace \geq by $>$.
Arbitrary linear combinations of positive semidefinite operators are not positive semidefinite. For example if T is pos. semidef. then $T-T=0$ is not.
4. Since $S^{*}=S^{-1}$, then $S S^{*}=\mathrm{id}_{V}=S^{*} S$ so S is normal. By the spectral theorem for complex normal operators, S has an orthonormal eigenbasis. If v is an eigenvector for S with eigenvalue λ, then since S is normal v is an eigenvector for S^{*} with eigenvalue $\bar{\lambda}$. But v is also an eigenvector for S^{-1} with eigenvalue λ^{-1}. Therefore $|\lambda|^{2}=\lambda \bar{\lambda}=\lambda \lambda^{-1}=1$.
The first posted version of this problem mistakenly omitted the hypothesis that V be complex. This was a mistake and this problem was not
intended to be a trick question. It is not true that S is diagonaliazable if V is real. For example, see a rotation matrix in \mathbb{R}^{2}.
5. S is an isometry if and only it has an orthonormal eigenbasis. If it does not have an orthonormal eigenbasis then, no matter what the eigenvalues are, it won't be normal and hence won't be an isometry. Examples of matrices S whose eigenvectors are 1 and -1 but whose eigenvectors are not orthogonal are easy to construct: simply conjugate

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

by a matrix whose columns are not orthogonal.

