Math 110

July 18, 2018

Adjoints of Operators (SOLUTIONS)

- 1. (a) $(M^{\top}M)_{ik} = \sum_{j} M_{ij}^{\top}M_{jk} = \sum_{j} M_{ji}M_{jk}$ and this is the dot product of the *i*th column of M with the *k*th column of M. Therefore it's 1 if i = k and 0 otherwise. Therefore $M^{\top}M$ is the identity matrix.
 - (b) M is a square matrix with orthonormal, hence linearly independent, columns so M is invertible. Since $M^{\top}M = I$ then $M^{\top}MM^{-1} = M^{-1}$ so $M^{\top} = M^{-1}$ so $MM^{\top} = I$. Reversing the argument in part (a) then shows that M^{\top} has orthonormal columns, hence M has orthonormal rows.
- 2. U is invariant for T if and only if $Tu \in U$ for all $u \in U$ if and only if $\langle Tu, w \rangle = 0$ for all $u \in U$ and for all $w \in U^{\perp}$ if and only if $\langle u, T^*w \rangle = 0$ for all $u \in U$ and $w \in U^{\perp}$ if and only if $T^*w \in U^{\perp}$ for all $w \in U^{\perp}$ if and only if U^{\perp} is invariant for T^* .
- 3. Recall rank nullity: $\dim(V) = \dim(\ker(T^*)) + \dim(\operatorname{im}(T^*))$ and the fact that $\ker(T) = \operatorname{im}(T^*)^{\perp}$. Then

T is injective if and only if $\ker(T) = \{0\}$ if and only if $\operatorname{im}(T^*)^{\perp} = \{0\}$ if and only if $\operatorname{im}(T^*) = V$ if and only if $\dim(\ker(T^*)) = 0$ if and only if $\dim(\operatorname{im}(T^*)) = \dim(V)$ if and only if $\operatorname{im}(T^*) = V$ if and only if T^* is surjective.

To prove that T is surjective if and only if T^* is injective, replace T by T^* in the above and use the fact that $(T^*)^* = T$.

4. Consider \mathbb{R}^2 with the dot product and

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

5. This is integration by parts:

$$\begin{split} \langle Tf,g\rangle &= \int_{-\infty}^{\infty} i\frac{\partial f}{\partial x}\overline{g}dx = if\overline{g}|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} if\frac{\partial\overline{g}}{\partial x}dx \\ &= \int_{-\infty}^{\infty} f\overline{i\frac{\partial g}{\partial x}} = \langle f,Tg\rangle \end{split}$$

where here I used the fact that the boundary term vanishes since f and g go to 0 as at infinity, and the fact that $\overline{i} = -i$ and the fact that $\overline{ab} = \overline{ab}$.

6. Note that V is a complex inner product space. In class we showed that if $\langle Tv, v \rangle = 0$ for all $v \in V$, then T = 0. A corollary of this is that

if $\langle Tv, v \rangle = \langle Sv, v \rangle$ then $\langle (T - S)v, v \rangle = 0$ so T - S = 0 so T = S. Therefore it is enough to show that

$$\langle Tv, v \rangle = \langle T^*v, v \rangle$$

for all $v \in V$. This is immediate since $\langle Tv, v \rangle$ is real:

$$\langle Tv, v \rangle = \overline{\langle Tv, v \rangle} = \langle v, Tv \rangle = \langle T^*v, v \rangle.$$

7. Any eigenvalue of T must be 0 or 1:

$$Tv = \lambda v \Rightarrow T^9 v = \lambda^9 v \text{ and } T^8 v = \lambda^8 v$$

 $\Rightarrow \lambda^9 = \lambda^8 \Rightarrow \lambda = 0, 1.$

Since T is self-adjoint it is diagonalizable, so by picking an eigenbasis you can represent it by a diagonal matrix M with 0s and 1s on the diagonal. Then matrix satisfies $M^2 = M$ so T satisfies $T^2 = T$.