Math 110

July 18, 2018
Adjoints of Operators (SOLUTIONS)

1. (a) $\left(M^{\top} M\right)_{i k}=\sum_{j} M_{i j}^{\top} M_{j k}=\sum_{j} M_{j i} M_{j k}$ and this is the dot product of the i th column of M with the k th column of M. Therefore it's 1 if $i=k$ and 0 otherwise. Therefore $M^{\top} M$ is the identity matrix.
(b) M is a square matrix with orthonormal, hence linearly independent, columns so M is invertible. Since $M^{\top} M=I$ then $M^{\top} M M^{-1}=$ M^{-1} so $M^{\top}=M^{-1}$ so $M M^{\top}=I$. Reversing the argument in part (a) then shows that M^{\top} has orthonormal columns, hence M has orthonormal rows.
2. U is invariant for T if and only if $T u \in U$ for all $u \in U$ if and only if $\langle T u, w\rangle=0$ for all $u \in U$ and for all $w \in U^{\perp}$ if and only if $\left\langle u, T^{*} w\right\rangle=0$ for all $u \in U$ and $w \in U^{\perp}$ if and only if $T^{*} w \in U^{\perp}$ for all $w \in U^{\perp}$ if and only if U^{\perp} is invariant for T^{*}.
3. Recall rank nullity: $\operatorname{dim}(V)=\operatorname{dim}\left(\operatorname{ker}\left(T^{*}\right)\right)+\operatorname{dim}\left(\operatorname{im}\left(T^{*}\right)\right)$ and the fact that $\operatorname{ker}(T)=\operatorname{im}\left(T^{*}\right)^{\perp}$. Then
T is injective if and only if $\operatorname{ker}(T)=\{0\}$ if and only if $\operatorname{im}\left(T^{*}\right)^{\perp}=\{0\}$ if and only if $\operatorname{im}\left(T^{*}\right)=V$ if and only if $\operatorname{dim}\left(\operatorname{ker}\left(T^{*}\right)\right)=0$ if and only if $\operatorname{dim}\left(\operatorname{im}\left(T^{*}\right)\right)=\operatorname{dim}(V)$ if and only if $\operatorname{im}\left(T^{*}\right)=V$ if and only if T^{*} is surjective.
To prove that T is surjective if and only if T^{*} is injective, replace T by T^{*} in the above and use the fact that $\left(T^{*}\right)^{*}=T$.
4. Consider \mathbb{R}^{2} with the dot product and

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

5. This is integration by parts:

$$
\begin{gathered}
\langle T f, g\rangle=\int_{-\infty}^{\infty} i \frac{\partial f}{\partial x} \bar{g} d x=\left.i f \bar{g}\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} i f \frac{\partial \bar{g}}{\partial x} d x \\
=\int_{-\infty}^{\infty} f i \overline{\frac{\partial g}{\partial x}}=\langle f, T g\rangle
\end{gathered}
$$

where here I used the fact that the boundary term vanishes since f and g go to 0 as at infinity, and the fact that $\bar{i}=-i$ and the fact that $\bar{a} \bar{b}=\overline{a b}$.
6. Note that V is a complex inner product space. In class we showed that if $\langle T v, v\rangle=0$ for all $v \in V$, then $T=0$. A corollary of this is that
if $\langle T v, v\rangle=\langle S v, v\rangle$ then $\langle(T-S) v, v\rangle=0$ so $T-S=0$ so $T=S$. Therefore it is enough to show that

$$
\langle T v, v\rangle=\left\langle T^{*} v, v\right\rangle
$$

for all $v \in V$. This is immediate since $\langle T v, v\rangle$ is real:

$$
\langle T v, v\rangle=\overline{\langle T v, v\rangle}=\langle v, T v\rangle=\left\langle T^{*} v, v\right\rangle
$$

7. Any eigenvalue of T must be 0 or 1 :

$$
\begin{aligned}
T v=\lambda v & \Rightarrow T^{9} v=\lambda^{9} v \text { and } T^{8} v=\lambda^{8} v \\
\Rightarrow & \lambda^{9}=\lambda^{8} \Rightarrow \lambda=0,1
\end{aligned}
$$

Since T is self-adjoint it is diagonalizable, so by picking an eigenbasis you can represent it by a diagonal matrix M with 0 s and 1 s on the diagonal. Then matrix satisfies $M^{2}=M$ so T satisfies $T^{2}=T$.

