Math 110

July 18, 2018
Adjoints of Operators

1. For a matrix M, let M^{\top} denote the tranpose of $M: M_{i j}^{\top}=M_{j i}$. Let M be a real matrix whose columns are orthonormal with respect to the dot product.
(a) Show that $M^{\top} M=I$ where I is the identity matrix.
(b) (Added later: I forgot to mention that M needs to be square!) Show that M also has orthonormal rows (hint: if $M^{\top} M=I$ then $\left.M M^{\top}=I\right)$.
2. Prove that U is an invariant subspace for T if and only if U^{\perp} is an invariant subspace for T^{*}.
3. Prove that T is injective if and only if T^{*} is surjective. Prove that T is surjective if and only if T^{*} is injective.
4. Give an example of a transformation of an inner product space that is normal but not self-adjoint.
5. Let V be the vector space of infinitely differentiable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that f and all its derivatives to 0 at ∞ faster than any polynomial. Give V the L^{2} inner product:

$$
\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x
$$

Show that the map $T: V \rightarrow V$ defined by

$$
f \mapsto i \frac{\partial f}{\partial x}
$$

satisfies

$$
\langle T f, g\rangle=\langle f, T g\rangle
$$

for all $f, g \in V$.
6. Let V be a complex inner product space. Prove that $T: V \rightarrow V$ is self-adjoint if and only if is $\langle T v, v\rangle$ is real for all $v \in V$.
7. (Axler 7.B 7) Suppose V is a complex inner product space and $T: V \rightarrow V$ is normal and $T^{9}=T^{8}$. Prove that T is self-adjoint and $T^{2}=T$. (Hint: what are the eigenvalues of T ?)

