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Orthogonal Projections (SOLUTIONS)

1. Since V = U ⊕ U⊥, write v = u + w where u ∈ U and w ∈ U⊥. By
definition PU(v) = u. Since (U⊥)⊥ = U , then PU⊥(v) = w. Therefore
PU + PU⊥ = idV .

2. Let u1 = 1√
2

(
1
1

)
. Then the projection of e1 onto U is

(e1 · u1)u1 =
1

2
(e1 + e2)

and the projection of e2 onto U is the same thing:

(e2 · u1)u1 =
1

2
(e1 + e2).

Since the columns of the matrix for a PU are PU(e1) and PU(e2), the
matrix for PU is (

1
2

1
2

1
2

1
2

)
.

3. Let

u3 =
1√
3

1
1
1

 .

Then u3 is an orthonormal basis for U⊥. Similarly to the last question,

PU⊥(ei) = (ei · u3)u3 =
1

3

1
1
1

 .

Therefore the matrix for PU⊥ is

1

3

1 1 1
1 1 1
1 1 1

 .

By question 1 the matrix for PU is1
1

1

− 1

3

1 1 1
1 1 1
1 1 1

 =

 2
3
−1

3
−1

3

−1
3

2
3
−1

3

−1
3
−1

3
2
3

 .

4. (a) The bilinearity properties follow from the fact that A is linear and
the dot product is bilinear. The symmetry property follows from
the fact that A is symmetric. Write

x =

(
x1
x2

)
1



so that
〈x, x〉 = 4x21 − 4x1x2 + 5x22.

Complete the square to see that this is a sum of two positive things:

4x21 − 4x1x2 + 5x22 = (2x1 − x2)2 − x22 + 5x22 = (2x1 − x2)2 + 4x22.

Therefore 〈x, x〉 ≥ 0 for all x and if 〈x, x〉 = 0, then 2x1 − x2 = 0
and x2 = 0 so that x1 = x2 = 0.

(b) The sets ‖x‖2 = c are of the form

4x21 − 4x1x2 + 5x22 = c

that is,
(2x1 − x2)2 + 4x22 = c.

This is a conic section and is bounded (doesn’t go to infinity) since
4x22 < c and (2x1 − x2)2 < c. Therefore it’s an ellipse, though the
equation might not look so familiar since it’s a rotated ellipse.

The following might help to see what’s going on. Suppose that you
can find a symmetric matrix B such that A = B2. Then B = B∗

and so
x · Ax = x ·B2x = Bx ·Bx.

Therefore the solutions of to the equation

x · Ax = c

are the same as the those of the equation

Bx ·Bx = c

which are the same as B−1y for

y · y = c.

The solutions to the last equation are just circles, and the points
B−1y are circles stretched by the linear map B−1. Since A is sym-
metric with nonnegative eigenvalues, it turns out you can find B
such that B2 = A. The easy way is to diagonalize A:

A = P

(
λ1

λ2

)
P−1

for some λ1, λ2 > 0. Then define

B = P

(√
λ1 √

λ2

)
P−1.

We’ll cover square roots more later.
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(c) ‖e1‖ = 2 so u1 = 1
2
e1. Then

〈e2, u1〉 =
1

2
e2 · Ae1 = −1

so

e2 − 〈e2, u1〉u1 = e2 +
1

2
e1

so

u2 =
e2 + 1

2
e1

2
=

1

4
e1 +

1

2
e2.

5. The vector x = (1, 0) would be a nonzero vector such that 〈x, x〉 = 0.

6. The idea is to move P to the origin in a way that preserves distances,
perform an orthogonal projection, and then move P back. Namely, let
u be such that P + u passes through 0. Let w be the closest point to
v + u on P + u. Then w − u is the closest point to v on P . Therefore
the point on P closest to v is PP+u(v + u)− u.

7. Let

x =



1
3
2
1
3
2
2
4
4


, y =



2
7
5
2
5
6
3
8
7


.

Orthogonally project y onto Span(x):

PSpan(x)(y) = ax.

The number a is the number that minimizes
9∑

i=1

(axi − yi)2

and therefore is the constant in the desired linear relation. Normalize x
to get u, an orthonormal basis for Span(x):

u =
1

8



1
3
2
1
3
2
2
4
4


3



PSpan(x)(y) = (y · u)u.

This turns out to be 2x, so a indeed is 2 exactly.

8. Let vi be the ith column of M so that M can be represented by the list of
vectors (v1, . . . , vn) viewed as column vectors placed next to each other.

Perform Gram-Schmidt on (v1, . . . , vn) to get (u1, . . . , un). Then vk is in
the span of (u1, . . . , uk) so that

vk = (vi · u1)u1 + (vi · u2)u2 + · · ·+ (vk · uk)uk.

Therefore
(v1, . . . , vn) = (u1, . . . , un)R

where the kth column of R is 

vk · u1
vk · u2

...
vk · uk

0
0
...
0


.

Let Q be the matrix whose ith column is ui. Then M = QR.
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