Math 110

July 16, 2018
Orthogonal Projections

1. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space and let P_{U} be the orthogonal projection onto the subspace U. Show that $P_{U^{\perp}}=\mathrm{id}_{V}-P_{U}$.
2. Consider \mathbb{R}^{2} with the dot product. Let U be the span of $(1,1)$. With respect to the standard basis vectors, what is the matrix for the orthogonal projection onto U ?
3. Consider \mathbb{R}^{3} with the dot product. Let U be the subspace of vectors (x, y, z) such that $x+y+z=0$. With respect to the standard basis vectors, what is the matrix for the orthogonal projection onto U ?
4. Let

$$
A=\left(\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right)
$$

Put an inner product on \mathbb{R}^{2} by $\langle x, y\rangle:=x \cdot A y$.
(a) Check that $\langle\cdot, \cdot\rangle$ is an inner product.
(b) What are the sets $\|x\|^{2}=$ constant? What do they look like in the plane, geometrically?
(c) Start with the standard basis $\left(e_{1}, e_{2}\right)$ and do Gram-Schmidt to get an orthonormal basis. (In particular, note that $\left(e_{1}, e_{2}\right)$ is not orthonormal for $\langle\cdot, \cdot\rangle$. .)
5. In the last problem, what would "go wrong" if you used $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ instead?
6. Consider \mathbb{R}^{3} with the dot product. Let v be a vector in \mathbb{R}^{3} and P a plane possibly not passing through the origin. How could you use an orthogonal projection to the find the point on P closest to v ?
7. In a highly unscientific study, a GSI collects information from nine students about how much time they studied for a quiz and compares it to their scores on that quiz (out of 8):

Student	Hours Studied	Quiz Score
1	1	2
2	3	7
3	2	5
4	1	2
5	3	5
6	2	6
7	2	3
8	4	8
9	4	7

The GSI guesses that there's a linear relation $f(x)=a x$ writing the quiz score as a function of the number of hours studied x. It seems like a should be around 2 but use the available data and orthogonal projection to get the best guess for a.
8. Consider the dot product on \mathbb{R}^{n}. Using Gram-Schmidt on the columns of a real 2×2 matrix M, should that M can be written as a product $M=Q R$ where Q has orthonormal columns and R is upper triangular (that is, R has zeroes below the diagonal). Repeat this process for a 3×3 real matrix. At this point you should be able to convince yourself that this is true for arbitrary $n \times n$ real matrices.
This fact is used in several computer algorithms that find eigenvalues of matrices.

