Math 110
July 12, 2018
Orthogonal Complement (SOLUTIONS)

1. (a)

$$
U^{\perp}=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \right\rvert\, a+b+2 c=0 \text { and } 2 a+b+2 c=0\right\} .
$$

Solving the system of two equations

$$
\begin{gathered}
a+b+2 c=0 \\
2 a+b+2 c=0
\end{gathered}
$$

shows that the solution is $a=0, b=-2 c$ so that U^{\perp} consists of vectors of the form

$$
\left(\begin{array}{c}
0 \\
-2 c \\
c
\end{array}\right)
$$

A basis is

$$
\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

(b) Gram-Schmidt tells us to normalize the first (and, in this case, only) basis vector. Thus

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)
$$

is an orthonormal basis for U^{\perp}.
(c) Recall that if v is a vector in an inner product space and U a subspace then the closest point on U to v is the orthogonal projection of v to U.
Let P_{U} be the orthogonal projection onto U.
Let u_{1}, u_{2}, u_{3} be an orthnormal basis of \mathbb{R}^{3} such that u_{1} and u_{2} form an orthonormal basis of U. Then since

$$
v=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2}+\left(v \cdot u_{3}\right) u_{3}
$$

the projection of v onto U is

$$
P_{U}(v)=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2} .
$$

or

$$
P_{U}(v)=v-\left(v \cdot u_{3}\right) u_{3} .
$$

If

$$
v=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

then one can use u_{3} from part (b) to compute the projection of v onto U :

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot \frac{1}{\sqrt{5}}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)\right) \frac{1}{\sqrt{5}}\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
3 / 5 \\
6 / 5
\end{array}\right) .
$$

Alternatively, one could apply Gram-Schmidt to

$$
\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

to an orthonormal basis $\left(u_{1}, u_{2}\right)$ for U :

$$
\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), \frac{1}{\sqrt{30}}\left(\begin{array}{c}
5 \\
-1 \\
-2
\end{array}\right)
$$

And then, using the formula

$$
P_{U}(v)=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2}
$$

for $v=(1,1,1)$,

$$
\begin{aligned}
P_{U}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot \frac{1}{6}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right. &) \frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot \frac{1}{\sqrt{30}}\left(\begin{array}{c}
5 \\
-1 \\
-2
\end{array}\right)\right) \frac{1}{\sqrt{30}}\left(\begin{array}{c}
5 \\
-1 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
3 / 5 \\
6 / 5
\end{array}\right) .
\end{aligned}
$$

2. (a)

$$
U=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \right\rvert\, a+b+2 c=0\right\}
$$

and thus consists of vectors of the form

$$
\left(\begin{array}{c}
-b-2 c \\
b \\
c
\end{array}\right)
$$

a basis of which is

$$
v_{1}=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

(b) To do Gram-Schmidt:

$$
\begin{gathered}
u_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \\
v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)-\left(\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
\end{gathered}
$$

so that

$$
u_{2}=\frac{v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}}{\left\|v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}\right\|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

Therefore an orthonormal basis is

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

(c) Let u_{3} be an orthormal basis for U :

$$
u_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

Then the closest point to $(1,1,1)$ on U is

$$
P_{U}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \cdot \frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right) \frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
2 / 3 \\
2 / 3 \\
4 / 3
\end{array}\right)
$$

