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Inner Product Spaces and Gram-Schmidt (SOLUTIONS)

1. Suppose 〈u, v〉 = 0. Then

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, v〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 = ‖u‖2 + ‖v‖2.

2.

‖u+v‖2+‖u−v‖2 = ‖u‖2+〈u, v〉+〈v, u〉+‖v‖2+‖u‖2−〈u, v〉−〈v, u〉+‖v‖2.

3. (e1, e2), (e1,−e2), (e2, e1), (−e2, e1).

4. Suppose that e1 is the first basis vector. The next basis vector has to be
orthogonal to e1 and thus in the span of e2 and e3. Since it has to have
unit norm, it can be written

cos(θ)e2 + sin(θ)e3

for some angle θ. A vector orthogonal to this one (and orthogonal to e1)
must be of the form

±(− sin(θ)e2 + cos(θ)e3).

Therefore the possible bases with e1 first are

(e1, cos(θ)e2 + sin(θ)e3,±(− sin(θ)e2 + cos(θ)e3))

(two possibilities for every angle θ). There are two other analogous cases
where e1 is the second or third basis vector.

5. Let v1 =

(
1
2

)
and v2 =

(
2
1

)
. Then

u1 =
1√
5

(
1
2

)
.

v2 − 〈v2, u1〉u1 =

(
2
1

)
−
((

2
1

)
· 1√

5

(
1
2

))
1√
5

(
1
2

)
=

(
6/5
−3/5

)
and

u2 =
v2 − 〈v2, u1〉u1
‖v2 − 〈v2, u1〉u1‖

=

√
5

3

(
6/5
−3/5

)
.

u1, u2 is an orthonormal basis.
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6. Let

v1 =

1
1
1

 , v2 =

 1
1
−2

 .

Then

u1 =
1

‖v1‖
v1 =

1√
3

1
1
1

 .

〈v2, u1〉 = 0⇒ u2 =
1

‖v2‖
v2 =

1

2
√

2

 1
1
−2

 .

The result of Gram-Schmidt is the orthonormal basis (u1, u2).

The orthogonal complement is the set of vectors (a, b, c) such that

a+ b+ c = 0

a+ b− 2c = 0

i.e.,
c = 0, a+ b = 0.

These vectors are of the form (a,−a, 0) and so a basis is (1,−1, 0). Nor-
malizing this vector gives

1√
2

 1
−1
0

 .

This is an orthonormal basis.

7. Recall that the orthogonal projection of a vector w onto the span of
another vector v is

PSpan(v)(w) =
〈w, v〉
〈v, v〉

v.

This formula works for any inner product space. For this problem, the
inner product is the L2 inner product:

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

Note that for real numbers a that a = a.

Hence the projection of the function f(x) = x onto the span of the
constant function 1 is

〈f, 1〉
〈1, 1〉

1 =

∫ 1

0
xdx∫ 1

0
12dx

1 =
1

2
.
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Then x− 1/2 is orthogonal to a the constant functions and

f =
1

2︸︷︷︸
f1

+x− 1

2︸ ︷︷ ︸
f2

is the desired decomposition of f .

Similarly, for g(x) = cos(2πx), the projection of g onto the span of the
constant function 1 is

〈g, 1〉
〈1, 1〉

1 =

∫ 1

0
cos(2πx)dx∫ 1

0
12dx

1 = 0.

Therefore g is already orthogonal to the constant function 1. Hence

g = 0︸︷︷︸
g1

+ cos(2πx)︸ ︷︷ ︸
g2

is the desired decomposition of g.

8. Let u1, u2, . . . , un be an orthonormal basis of V . For an arbitrary vector
v,

v = 〈v, u1〉u1 + · · ·+ 〈v, un〉un
Therefore

φ(v) = 〈v, u1〉φ(u1) + · · ·+ 〈v, un〉φ(un) =
n∑

i=1

〈v, φ(ui)ui〉.

Therefore u =
∑n

i=1 φ(ui)ui is such that

φ(v) = 〈v, u〉

for all v ∈ V .

9. The columns of an “orthogonal” matrix are an orthonormal set, so why
isn’t it called an “orthonormal” matrix instead?
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