Math 110

July 11, 2018
Inner Product Spaces and Gram-Schmidt (SOLUTIONS)

1. Suppose $\langle u, v\rangle=0$. Then

$$
\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle u, v\rangle+\langle u, v\rangle+\langle v, u\rangle+\langle v, v\rangle=\|u\|^{2}+\|v\|^{2} .
$$

2.

$$
\|u+v\|^{2}+\|u-v\|^{2}=\|u\|^{2}+\langle u, v\rangle+\langle v, u\rangle+\|v\|^{2}+\|u\|^{2}-\langle u, v\rangle-\langle v, u\rangle+\|v\|^{2} .
$$

3. $\left(e_{1}, e_{2}\right),\left(e_{1},-e_{2}\right),\left(e_{2}, e_{1}\right),\left(-e_{2}, e_{1}\right)$.
4. Suppose that e_{1} is the first basis vector. The next basis vector has to be orthogonal to e_{1} and thus in the span of e_{2} and e_{3}. Since it has to have unit norm, it can be written

$$
\cos (\theta) e_{2}+\sin (\theta) e_{3}
$$

for some angle θ. A vector orthogonal to this one (and orthogonal to e_{1}) must be of the form

$$
\pm\left(-\sin (\theta) e_{2}+\cos (\theta) e_{3}\right)
$$

Therefore the possible bases with e_{1} first are

$$
\left(e_{1}, \cos (\theta) e_{2}+\sin (\theta) e_{3}, \pm\left(-\sin (\theta) e_{2}+\cos (\theta) e_{3}\right)\right)
$$

(two possibilities for every angle θ). There are two other analogous cases where e_{1} is the second or third basis vector.
5. Let $v_{1}=\binom{1}{2}$ and $v_{2}=\binom{2}{1}$. Then

$$
\begin{gathered}
u_{1}=\frac{1}{\sqrt{5}}\binom{1}{2} . \\
v_{2}-\left\langle v_{2}, u_{1}\right\rangle u_{1}=\binom{2}{1}-\left(\binom{2}{1} \cdot \frac{1}{\sqrt{5}}\binom{1}{2}\right) \frac{1}{\sqrt{5}}\binom{1}{2}=\binom{6 / 5}{-3 / 5}
\end{gathered}
$$

and

$$
u_{2}=\frac{v_{2}-\left\langle v_{2}, u_{1}\right\rangle u_{1}}{\left\|v_{2}-\left\langle v_{2}, u_{1}\right\rangle u_{1}\right\|}=\frac{\sqrt{5}}{3}\binom{6 / 5}{-3 / 5} .
$$

u_{1}, u_{2} is an orthonormal basis.
6. Let

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)
$$

Then

$$
\begin{gathered}
u_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) . \\
\left\langle v_{2}, u_{1}\right\rangle=0 \Rightarrow u_{2}=\frac{1}{\left\|v_{2}\right\|} v_{2}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) .
\end{gathered}
$$

The result of Gram-Schmidt is the orthonormal basis $\left(u_{1}, u_{2}\right)$.
The orthogonal complement is the set of vectors (a, b, c) such that

$$
\begin{gathered}
a+b+c=0 \\
a+b-2 c=0
\end{gathered}
$$

i.e.,

$$
c=0, a+b=0 .
$$

These vectors are of the form $(a,-a, 0)$ and so a basis is $(1,-1,0)$. Normalizing this vector gives

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

This is an orthonormal basis.
7. Recall that the orthogonal projection of a vector w onto the span of another vector v is

$$
P_{\operatorname{Span}(v)}(w)=\frac{\langle w, v\rangle}{\langle v, v\rangle} v
$$

This formula works for any inner product space. For this problem, the inner product is the L^{2} inner product:

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x
$$

Note that for real numbers a that $\bar{a}=a$.
Hence the projection of the function $f(x)=x$ onto the span of the constant function 1 is

$$
\frac{\langle f, 1\rangle}{\langle 1,1\rangle} 1=\frac{\int_{0}^{1} x d x}{\int_{0}^{1} 1^{2} d x} 1=\frac{1}{2} .
$$

Then $x-1 / 2$ is orthogonal to a the constant functions and

$$
f=\underbrace{\frac{1}{2}}_{f_{1}}+\underbrace{x-\frac{1}{2}}_{f_{2}}
$$

is the desired decomposition of f.
Similarly, for $g(x)=\cos (2 \pi x)$, the projection of g onto the span of the constant function 1 is

$$
\frac{\langle g, 1\rangle}{\langle 1,1\rangle} 1=\frac{\int_{0}^{1} \cos (2 \pi x) d x}{\int_{0}^{1} 1^{2} d x} 1=0 .
$$

Therefore g is already orthogonal to the constant function 1. Hence

$$
g=\underbrace{0}_{g_{1}}+\underbrace{\cos (2 \pi x)}_{g_{2}}
$$

is the desired decomposition of g.
8. Let $u_{1}, u_{2}, \ldots, u_{n}$ be an orthonormal basis of V. For an arbitrary vector v,

$$
v=\left\langle v, u_{1}\right\rangle u_{1}+\cdots+\left\langle v, u_{n}\right\rangle u_{n}
$$

Therefore

$$
\phi(v)=\left\langle v, u_{1}\right\rangle \phi\left(u_{1}\right)+\cdots+\left\langle v, u_{n}\right\rangle \phi\left(u_{n}\right)=\sum_{i=1}^{n}\left\langle v, \overline{\phi\left(u_{i}\right)} u_{i}\right\rangle .
$$

Therefore $u=\sum_{i=1}^{n} \overline{\phi\left(u_{i}\right)} u_{i}$ is such that

$$
\phi(v)=\langle v, u\rangle
$$

for all $v \in V$.
9. The columns of an "orthogonal" matrix are an orthonormal set, so why isn't it called an "orthonormal" matrix instead?

