Math 110
July 11, 2018
Inner Product Spaces and Gram-Schmidt

1. Prove the "Pythagorean theorem" for inner product spaces: if u and v are orthogonal, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$. How does this relate to the actual Pythagorean theorem?
2. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. Prove the parallelogram equality: for $u, v \in V$:

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

(I did this in class for the dot product, but the proof is the same in both cases.)
3. Consider \mathbb{R}^{2} with its usual dot product. How many orthonormal bases of \mathbb{R}^{2} include the vector $(1,0)$? Write them all down.
4. Consider \mathbb{R}^{3} with its usual dot product. How many orthonormal bases of \mathbb{R}^{3} include the vector $(1,0,0)$? Write them all down.
5. Consider \mathbb{R}^{2} with its usual dot product. Apply Gram-Schmidt to the vectors

$$
\binom{1}{2},\binom{2}{1}
$$

to get an orthonormal basis of \mathbb{R}^{2}.
6. Consider \mathbb{R}^{3} with its usual dot product. Apply Gram-Schmidt to the vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)
$$

to get an orthonormal basis for their span. What is a basis for the orthogonal complement to their span?
7. Let V be the vector space of continuous functions on the interval $[0,1]$ with the L^{2} inner product. Let U be the span of the contant function 1 . Write the function $f(x)=x$ as $f=f_{1}+f_{2}$ where $f_{1} \in U$ and $f_{2} \in U^{\perp}$. Write the function $g(x)=\cos (2 \pi x)$ as $f=g_{1}+g_{2}$ where $g_{1} \in U$ and $g_{2} \in U^{\perp}$.
8. Let $(V,\langle\cdot, \cdot\rangle)$ be a finite-dimensional inner product space over \mathbb{F}. Let $\phi: V \rightarrow \mathbb{F}$ be a linear map. Prove that there exists $u \in V$ such that $\langle v, u\rangle=\phi(v)$ for all v. (Hint: a linear map is defined by its restriction to a basis. Consider an orthonormal basis of V.)
9. Consider \mathbb{R}^{n} with the usual dot product. An $n \times n$ matrix whose columns form an orthonormal basis of \mathbb{R}^{n} is called an "orthogonal matrix". Explain why this term is (unfortunately) unsatisfying.

