Math 110

July 11, 2018

Inner Product Spaces and Gram-Schmidt

- 1. Prove the "Pythagorean theorem" for inner product spaces: if u and v are orthogonal, then $||u + v||^2 = ||u||^2 + ||v||^2$. How does this relate to the actual Pythagorean theorem?
- 2. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Prove the parallelogram equality: for $u, v \in V$:

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$$

(I did this in class for the dot product, but the proof is the same in both cases.)

- 3. Consider \mathbb{R}^2 with its usual dot product. How many orthonormal bases of \mathbb{R}^2 include the vector (1,0)? Write them all down.
- 4. Consider \mathbb{R}^3 with its usual dot product. How many orthonormal bases of \mathbb{R}^3 include the vector (1,0,0)? Write them all down.
- 5. Consider \mathbb{R}^2 with its usual dot product. Apply Gram-Schmidt to the vectors

$$\begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix}$$

to get an orthonormal basis of \mathbb{R}^2 .

6. Consider \mathbb{R}^3 with its usual dot product. Apply Gram-Schmidt to the vectors

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$$

to get an orthonormal basis for their span. What is a basis for the orthogonal complement to their span?

- 7. Let V be the vector space of continuous functions on the interval [0, 1] with the L^2 inner product. Let U be the span of the contant function 1. Write the function f(x) = x as $f = f_1 + f_2$ where $f_1 \in U$ and $f_2 \in U^{\perp}$. Write the function $g(x) = \cos(2\pi x)$ as $f = g_1 + g_2$ where $g_1 \in U$ and $g_2 \in U^{\perp}$.
- 8. Let $(V, \langle \cdot, \cdot \rangle)$ be a finite-dimensional inner product space over \mathbb{F} . Let $\phi : V \to \mathbb{F}$ be a linear map. Prove that there exists $u \in V$ such that $\langle v, u \rangle = \phi(v)$ for all v. (Hint: a linear map is defined by its restriction to a basis. Consider an orthonormal basis of V.)
- 9. Consider \mathbb{R}^n with the usual dot product. An $n \times n$ matrix whose columns form an orthonormal basis of \mathbb{R}^n is called an "orthogonal matrix". Explain why this term is (unfortunately) unsatisfying.