Math 110 July 2, 2018 The Proof of Jordan Normal Form

Remember that not every linear transformation over \mathbb{C} is diagonalizable. The following theorem, originally proved by Camille Jordan in the 19th century, is the "next best thing". Even if you cannot diagonalize a transformation, you can find a basis where it is represented by a block diagonal matrix and the blocks themselves are almost diagonal:

Theorem 1. Let $T: V \to V$ be linear map and V a finite dimensional complex vector space. Then there exist indecomposable invariant subspaces U_1, \ldots, U_k , numbers $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$, and bases B_1, \ldots, B_k (where B_i is a basis of U_i) such that $V = U_1 \oplus \cdots \oplus U_k$ and, with respect to the basis $B_i, T|_{U_i}$ can be represented by a matrix that looks like

λ_i	1	0	•••	0 \
0	λ_i	1	• • •	0
0	0	λ_i	· · .	0
	÷	·	· · .	1
$\setminus 0$	0	0	• • •	λ_i

(a matrix with the same entry λ_i on the main diagonal and 1s on the diagonal above that).

Since V can be decomposed into a direct sum of indecomposable subspaces, it is enough to prove the theorem on each of those subspaces separately:

Proposition 2. Let $T: V \to V$ with V a finite dimensional complex vector space and suppose that V is an indecomposable invariant subspace. Then there exists a basis (v_1, \ldots, v_n) for V and a number λ such that with respect this basis T is represented by a matrix of the form

$$\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}$$

The point of this handout is to provide steps to prove Proposition 2. The exercises come in two parts.

1 Iterations of a linear map T

Exercise 3. (easy) Let $T : V \to W$ be an isomorphism and let $U \subset V$ be a subspace. Show that T maps U invertibly onto its image.

Exercise 4. Let $T: V \to W$ be linear surjection such that $\dim(V) = \dim(W)$. Show that T is invertible.

Exercise 5. Let $T: V \to V$ be a linear map. Suppose that $\operatorname{im}(T^k) = \operatorname{im}(T^{k+1})$ for some k. Show that $\operatorname{im}(T^{\ell}) = \operatorname{im}(T^k)$ for all $\ell \ge k$. (hint: consider the sequence of linear surjections $\operatorname{im}(T^k) \xrightarrow{T} \operatorname{im}(T^{k+1}) \xrightarrow{T} \operatorname{im}(T^{k+2}) \xrightarrow{T} \operatorname{im}(T^{k+3}) \xrightarrow{T} \cdots$)

Exercise 6. Let $T : V \to V$ with $\dim(V) = n$. Show that $\operatorname{im}(T^n) = \operatorname{im}(T^{n+1}) = \operatorname{im}(T^{n+2}) = \cdots$.

Exercise 7. Let $T: V \to V$ with $\dim(V) = n$. Show that $\ker(T^n) \cap \operatorname{im}(T^n) = \{0\}$. Then show that $V = \ker(T^n) \oplus \operatorname{im}(T^n)$.

2 Nilpotent Linear Maps

Definition 8. A linear map $N: V \to V$ is called nilpotent if $N^n = 0$ for some n.

Exercise 9. Let $T: V \to W$ and let X be a linearly independent subset of V such that T(X) is a basis of W. Show that $V = \text{Span}(X) \oplus \text{ker}(T)$.

The next three exercises are successive iterations of the same idea:

Exercise 10. Suppose $N: V \to V$ is such that $N \neq 0$ and $N^2 = 0$. Show that there exist disjoint linearly independent ordered sets $X(0) \subset V$ and $X(1) \subset V$ such that N(X(1)) is a basis of im(N) and $X(1) \cup N(X(1)) \cup X(0)$ is a basis of V.

A potentially helpful diagram is:

$$V \xrightarrow{N} \operatorname{im}(N) \xrightarrow{N} 0$$

$$X(1) \qquad N(X(1))$$

$$N(X(1))$$

$$X(0)$$

The top line contains three vector spaces. Below each vector space is a collection of finite subsets that together form a basis for that space. A subset maps to the subset to the right of it. If there is no subset to the right of it, it maps to 0.

Exercise 11. Suppose that $N : V \to V$ is such that $N^2 \neq 0$ and $N^3 = 0$. Show that there exist disjoint linearly independent ordered sets $X(0) \subset V$, $X(1) \subset V$, $X(2) \subset V$ such that

$$X(0) \cup X(1) \cup N(X(1)) \cup X(2) \cup N(X(2)) \cup N^{2}(X(2))$$

is a basis of V.

As in the previous exercise, a potentially helpful picture is

$$V \xrightarrow{N} \operatorname{im}(N) \xrightarrow{N} \operatorname{im}(N^2) \xrightarrow{N} 0$$

$$X(2) \qquad N(X(2)) \qquad N^2(X(2))$$

$$N(X(2)) \qquad N^2(X(2))$$

$$X(1) \qquad N(X(1))$$

$$N^2(X(2))$$

$$N(X(1))$$

$$X(0)$$

Exercise 12. Suppose that $N : V \to V$ is such that $N^3 \neq 0$ and $N^4 = 0$. Show that there exist disjoint linearly independent ordered sets $X(j) \subset V$, j = 0, 1, 2, 3 such that

$$\bigcup_{j=0}^{3}\bigcup_{i=0}^{j}N^{i}(X(j))$$

is a basis of V.

At this point you should be able to convince yourself that the following could be proved by induction (though I don't ask you to do so):

Proposition 13. Suppose that $N: V \to V$ is such that $N^k \neq 0$ and $N^{k+1} = 0$. Show that there exist disjoint linearly independent ordered sets $X(j) \subset V$, $j \in \{0, ..., k\}$ such that

$$\bigcup_{j=0}^{k}\bigcup_{i=0}^{j}N^{i}(X(j))$$

is a basis of V.

From now on assume the truth of Proposition 13.

Exercise 14. Let $N: V \to V$ be nilpotent. Show that there exists a basis of V which is a union of lists of the form $(v, N(v), N^2(v), \ldots, N^j(v))$.

Exercise 15. Let $N: V \to V$ be nilpotent and such that V is an indecomposable subspace. Show that there exists a basis of V of the form

$$(N^{n-1}(v), N^{n-2}(v), \dots, N(v), v).$$

Exercise 16. Show that, with respect to the basis in the previous exercise, the matrix for N is of the form

/ 0	1	0	• • •	0/
0	0	1	• • •	0
0	0	0	· .	0
	÷	·	· · .	1
$\setminus 0$	0	0	• • •	0/

That is, with 1s on the diagonal above the main diagonal and zeroes everywhere else.

3 Conclusion of the Proof

Exercise 17. Let V be a complex vector space of dimension n. Let $T: V \to V$ be a linear map for which V is an indecomposable subspace for T. Let λ be an eigenvalue for T. Use Exercise 7, applied to $T - \lambda \operatorname{id}_V$, to show that $V = \ker(T - \lambda \operatorname{id}_V)^n$ so that $T - \lambda \operatorname{id}_V$ is nilpotent.

Exercise 18. Combine Exercise 16 and Exercise 17 to prove Proposition 2.