Math 110
July 2, 2018

The Proof of Jordan Normal Form

Remember that not every linear transformation over \mathbb{C} is diagonalizable. The following theorem, originally proved by Camille Jordan in the 19th century, is the "next best thing". Even if you cannot diagonalize a transformation, you can find a basis where it is represented by a block diagonal matrix and the blocks themselves are almost diagonal:

Theorem 1. Let $T: V \rightarrow V$ be linear map and V a finite dimensional complex vector space. Then there exist indecomposable invariant subspaces U_{1}, \ldots, U_{k}, numbers $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$, and bases B_{1}, \ldots, B_{k} (where B_{i} is a basis of U_{i}) such that $V=U_{1} \oplus \cdots \oplus U_{k}$ and, with respect to the basis $B_{i},\left.T\right|_{U_{i}}$ can be represented by a matrix that looks like

$$
\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
0 & 0 & \lambda_{i} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right)
$$

(a matrix with the same entry λ_{i} on the main diagonal and $1 s$ on the diagonal above that).

Since V can be decomposed into a direct sum of indecomposable subspaces, it is enough to prove the theorem on each of those subspaces separately:

Proposition 2. Let $T: V \rightarrow V$ with V a finite dimensional complex vector space and suppose that V is an indecomposable invariant subspace. Then there exists a basis $\left(v_{1}, \ldots, v_{n}\right)$ for V and a number λ such that with respect this basis T is represented by a matrix of the form

$$
\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \lambda & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right)
$$

The point of this handout is to provide steps to prove Proposition 2. The exercises come in two parts.

1 Iterations of a linear map T

Exercise 3. (easy) Let $T: V \rightarrow W$ be an isomorphism and let $U \subset V$ be a subspace. Show that T maps U invertibly onto its image.

Exercise 4. Let $T: V \rightarrow W$ be linear surjection such that $\operatorname{dim}(V)=\operatorname{dim}(W)$. Show that T is invertible.

Exercise 5. Let $T: V \rightarrow V$ be a linear map. Suppose that $\operatorname{im}\left(T^{k}\right)=\operatorname{im}\left(T^{k+1}\right)$ for some k. Show that $\operatorname{im}\left(T^{\ell}\right)=\operatorname{im}\left(T^{k}\right)$ for all $\ell \geq k$. (hint: consider the sequence of linear surjections $\operatorname{im}\left(T^{k}\right) \xrightarrow{T} \operatorname{im}\left(T^{k+1}\right) \xrightarrow{T} \operatorname{im}\left(T^{k+2}\right) \xrightarrow{T} \operatorname{im}\left(T^{k+3}\right) \xrightarrow{T}$...)

Exercise 6. Let $T: V \rightarrow V$ with $\operatorname{dim}(V)=n$. Show that $\operatorname{im}\left(T^{n}\right)=$ $\operatorname{im}\left(T^{n+1}\right)=\operatorname{im}\left(T^{n+2}\right)=\cdots$.

Exercise 7. Let $T: V \rightarrow V$ with $\operatorname{dim}(V)=n$. Show that $\operatorname{ker}\left(T^{n}\right) \cap \operatorname{im}\left(T^{n}\right)=$ $\{0\}$. Then show that $V=\operatorname{ker}\left(T^{n}\right) \oplus \operatorname{im}\left(T^{n}\right)$.

2 Nilpotent Linear Maps

Definition 8. A linear map $N: V \rightarrow V$ is called nilpotent if $N^{n}=0$ for some n.

Exercise 9. Let $T: V \rightarrow W$ and let X be a linearly independent subset of V such that $T(X)$ is a basis of W. Show that $V=\operatorname{Span}(X) \oplus \operatorname{ker}(T)$.

The next three exercises are successive iterations of the same idea:
Exercise 10. Suppose $N: V \rightarrow V$ is such that $N \neq 0$ and $N^{2}=0$. Show that there exist disjoint linearly independent ordered sets $X(0) \subset V$ and $X(1) \subset V$ such that $N(X(1))$ is a basis of $\operatorname{im}(N)$ and $X(1) \cup N(X(1)) \cup X(0)$ is a basis of V.

A potentially helpful diagram is:

$$
\begin{array}{cl}
V \xrightarrow{N} & \operatorname{im}(N) \xrightarrow{N} 0 \\
X(1) & N(X(1)) \\
N(X(1)) & \\
X(0) &
\end{array}
$$

The top line contains three vector spaces. Below each vector space is a collection of finite subsets that together form a basis for that space. A subset maps to the subset to the right of it. If there is no subset to the right of it, it maps to 0 .

Exercise 11. Suppose that $N: V \rightarrow V$ is such that $N^{2} \neq 0$ and $N^{3}=0$. Show that there exist disjoint linearly independent ordered sets $X(0) \subset V$, $X(1) \subset V, X(2) \subset V$ such that

$$
X(0) \cup X(1) \cup N(X(1)) \cup X(2) \cup N(X(2)) \cup N^{2}(X(2))
$$

is a basis of V.

As in the previous exercise, a potentially helpful picture is

$$
\begin{array}{ccc}
V \xrightarrow{V} & N(N) \xrightarrow{N} \operatorname{im}\left(N^{2}\right) \xrightarrow{N} 0 \\
X(2) & N(X(2)) & N^{2}(X(2)) \\
N(X(2)) & N^{2}(X(2)) & \\
X(1) & N(X(1)) & \\
N^{2}(X(2)) & & \\
N(X(1)) & & \\
X(0) & &
\end{array}
$$

Exercise 12. Suppose that $N: V \rightarrow V$ is such that $N^{3} \neq 0$ and $N^{4}=0$. Show that there exist disjoint linearly independent ordered sets $X(j) \subset V$, $j=0,1,2,3$ such that

$$
\bigcup_{j=0}^{3} \bigcup_{i=0}^{j} N^{i}(X(j))
$$

is a basis of V.
At this point you should be able to convince yourself that the following could be proved by induction (though I don't ask you to do so):
Proposition 13. Suppose that $N: V \rightarrow V$ is such that $N^{k} \neq 0$ and $N^{k+1}=0$. Show that there exist disjoint linearly independent ordered sets $X(j) \subset V$, $j \in\{0, \ldots, k\}$ such that

$$
\bigcup_{j=0}^{k} \bigcup_{i=0}^{j} N^{i}(X(j))
$$

is a basis of V.
From now on assume the truth of Proposition 13.
Exercise 14. Let $N: V \rightarrow V$ be nilpotent. Show that there exists a basis of V which is a union of lists of the form $\left(v, N(v), N^{2}(v), \ldots, N^{j}(v)\right)$.
Exercise 15. Let $N: V \rightarrow V$ be nilpotent and such that V is an indecomposable subspace. Show that there exists a basis of V of the form

$$
\left(N^{n-1}(v), N^{n-2}(v), \ldots, N(v), v\right)
$$

Exercise 16. Show that, with respect to the basis in the previous exercise, the matrix for N is of the form

$$
\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

That is, with 1 s on the diagonal above the main diagonal and zeroes everywhere else.

3 Conclusion of the Proof

Exercise 17. Let V be a complex vector space of dimension n. Let $T: V \rightarrow V$ be a linear map for which V is an indecomposable subspace for T. Let λ be an eigenvalue for T. Use Exercise 7, applied to $T-\lambda_{\mathrm{id}_{V}}$, to show that $V=\operatorname{ker}\left(T-\lambda \mathrm{id}_{V}\right)^{n}$ so that $T-\lambda \mathrm{id}_{V}$ is nilpotent.

Exercise 18. Combine Exercise 16 and Exercise 17 to prove Proposition 2.

