Math 110

June 28, 2018
More Eigenstuff (SOLUTIONS)

1. Let $\binom{a}{b}$ be an eigenvector with eigenvalue λ. Then

$$
\begin{gathered}
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{a}{b}=\lambda\binom{a}{b} \\
\Rightarrow\binom{a \cos (\theta)-b \sin (\theta)}{a \sin (\theta)+b \cos (\theta)}=\binom{\lambda a}{\lambda b} \\
\Rightarrow b=-\frac{a \sin (\theta)}{\cos (\theta)-\lambda} \\
\Rightarrow a(\cos (\theta)-\lambda)+\frac{a(\sin (\theta))^{2}}{\cos (\theta)-\lambda}=0 \\
\Rightarrow(\cos (\theta)-\lambda)^{2}+(\sin (\theta))^{2}=0 \\
\Rightarrow \lambda^{2}-2 \cos (\theta)+1=0 \\
\Rightarrow \lambda=\cos (\theta) \pm i \sin (\theta)=e^{ \pm i \theta}
\end{gathered}
$$

The eigenvectors are of the form (for $a \neq 0$):

$$
\binom{a}{b}=\binom{a}{-\frac{a \sin (\theta)}{\cos (\theta)-(\cos (\theta) \pm i \sin (\theta))}}=\binom{a}{\mp i a} .
$$

For concreteness, set $a=1$ to get two eigenvectors:

$$
\binom{1}{\mp i} .
$$

2. In order to show that three statements A, B, C are equivalent it is enough to show that $A \Rightarrow B \Rightarrow C \Rightarrow A$.
Suppose that $P^{2}=P$. If λ is an eigenvalue of P then $P v=\lambda v$ so $P^{2} v=$ $\lambda P v \Rightarrow P v=\lambda P v$ so $\lambda=0$ or 1. I claim that $V=\operatorname{ker}(P) \oplus \operatorname{im}(P)$. Let $v \in \operatorname{ker}(P) \cap \operatorname{im}(P)$. Then $P v=0$ and $v=P w$ for some $w \in V$ so $0=$ $P v=P^{2} w=P w=v$. Hence $\operatorname{ker}(P) \cap \operatorname{im}(P)=\{0\}$ and $\operatorname{ker}(P)+\operatorname{im}(P)$ is a direct sum. Hence $\operatorname{dim}(\operatorname{ker}(P) \oplus \operatorname{im}(P))=\operatorname{dim} \operatorname{ker}(P)+\operatorname{dim}(\operatorname{im}(P))$ which by rank-nullity is $\operatorname{dim}(V)$. Hence $\operatorname{ker}(P) \oplus \operatorname{im}(P)$ is a subspace of V of dimension equal to $\operatorname{dim}(V)$ and so must be all of V. Note that $\operatorname{im}(P)$ is the 1-eigenspace of P and $\operatorname{ker}(P)$ is the 0-eigenspace.

Suppose that P is diagonalizable with eigenvalues belonging to the set $\{0,1\}$. Let U be the 1-eigenspace and W the 0 -eigenspace. Then clearly $U \cap W=\{0\}$ and, since P is diagonalizable, $U+W=V$. Hence $V=U \oplus W . P$ acts as the projection onto U.

Suppose that there exist subspaces U, W of V such that $V=U \oplus W$ and P is the projection onto $U: P(u+w)=u$. Then $P^{2}(u+w)=P(u)=$ $u=P(u+w)$ so $P^{2}=P$.
3. False: consider the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

acting on \mathbb{R}^{2}. As shown in class, the span of e_{1} is the only invariant subspace, so in particular V cannot be written as $U \oplus W$ for U and W invariant subspaces.

