Math 110 June 28, 2018 More Eigenstuff

1. Think of

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

as a linear map $\mathbb{C}^2 \to \mathbb{C}^2$. Find its eigenvectors and eigenvalues.

- 2. Let $P: V \to V$ a map of finite-dimensional vector spaces. Prove that the following are equivalent:
 - (a) $P^2 = P$
 - (b) P is diagonalizable and its eigenvalues belong to the set $\{0, 1\}$
 - (c) There exist subspaces U, W such that $V = U \oplus W$ and P is the projection onto U (i.e., if v = u + w for $u \in U$ and $w \in W$ then P(v) = u).
- 3. Is the following true or false? Why?

"Given $T: V \to V$ and $U \subset V$ an invariant subspace, there exists another invariant subspace W such that $V = U \oplus W$ ".